The increasing number of floods and the severity of their consequences, which is caused by phenomena, such as climate change and uncontrolled urbanization, create a growing need to develop operational procedures and tools for accurate and timely flood mapping and management. Synthetic Aperture Radar (SAR), with its day, night, and cloud-penetrating capacity, has proven to be a very useful source of information during calibration of hydrodynamic models considered indispensable tools for near real-time flood forecasting and monitoring. The paper begins with the analysis of radar signatures of temporal series of SAR data, by exploiting the short revisit time of the images that are provided by the Cosmo-SkyMed constellation of four satellites, in combination with a Digital Elevation Model for the extraction of flood extent and spatially distributed water depth in a flat area with complex topography during a flood event. These SAR-based hazard maps were then used to perform a bi-dimensional hydraulic model calibration on the November 2010 flood event at the mouth of the Bradano River in Basilicata, Italy. Once the best fit between flood predictions of hydrodynamic models was identified and the efficacy of SAR data in correcting hydrodynamic inconsistencies with regard to reliable assessment of flood extent and water-depth maps was shown by validation with the December 2013 Bradano River event. Based on calibration and validation results, the paper aims to show how the combination of the time series of Synthetic Aperture Radar (SAR) and Digital Elevation Model (DEM) derived water-depth maps with the data from the hydrodynamic model can provide valuable information for flood dynamics monitoring in a flat area with complex topography. Future research should focus on the integration and implementation of the semi-automatic proposed method in an operational system for near real-time flood management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.