Research in the area of robotics has made available numerous possibilities for further innovation in the education of children, especially in the rehabilitation of those with learning difficulties and/or intellectual disabilities. Despite the scientific evidence, there is still a strong scepticism against the use of robots in the fields of education and care of people. Here we present a study on the acceptance of robots by experienced practitioners (specialized in the treatment of intellectual disabilities) and university students in psychology and education sciences (as future professionals). The aim is to examine the factors, through the Unified Theory of Acceptance and Use of Technology (UTAUT) model, that may influence the decision to use a robot as an instrument in the practice. The overall results confirm the applicability of the model in the context of education and care of children, and suggest a positive attitude towards the use of the robot. The comparison highlights some scepticism among the practitioners, who perceive the robot as an expensive and limited tool, while students show a positive perception and a significantly higher willingness to use the robot. From this experience, we formulate the hypothesis that robots may be accepted if more integrated with standard rehabilitation protocols in a way that benefits can outweigh the costs.
The concept of sustainability, from a psychological point of view, can be related to the promotion of personal resources that help people to find decent and meaningful work and live quality lives. In the psychological concept of sustainability and sustainable development, the sustainability of careers is related not only to individual career management, but also to the possibility for individuals to obtain a good quality of life despite the frequent changes and the unpredictability of the work context. The present study focuses on the constructs of self-perceived employability and meaningful work, analyzing their relationships with workers’ quality of life. An empirical study was conducted on 660 Italian workers using the following measures: Self-perceived employability scale, work and meaning inventory, courage measure, satisfaction with life scale, and the flourishing scale. The results showed direct effects of employability and meaningful work on the indicators of quality of life (life satisfaction and flourishing); moreover, indirect effects of employability and meaningful work on the quality of life were found to be caused by the mediation of courage.
Recent studies suggest that some children with autism prefer robots as tutors for improving their social interaction and communication abilities which are impaired due to their disorder. Indeed, research has focused on developing a very promising form of intervention named Robot-Assisted Therapy. This area of intervention poses many challenges, including the necessary flexibility and adaptability to real unconstrained therapeutic settings, which are different from the constrained lab settings where most of the technology is typically tested. Among the most common impairments of children with autism and intellectual disability is social attention, which includes difficulties in establishing the correct visual focus of attention. This article presents an investigation on the use of novel deep learning neural network architectures for automatically estimating if the child is focusing their visual attention on the robot during a therapy session, which is an indicator of their engagement. To study the application, the authors gathered data from a clinical experiment in an unconstrained setting, which provided low-resolution videos recorded by the robot camera during the child-robot interaction. Two deep learning approaches are implemented in several variants and compared with a standard algorithm for face detection to verify the feasibility of estimating the status of the child directly from the robot sensors without relying on bulky external settings, which can distress the child with autism. One of the proposed approaches demonstrated a very high accuracy and it can be used for off-line continuous assessment during the therapy or for autonomously adapting the intervention in future robots with better computational capabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.