Food-producing animals are the major reservoirs for many foodborne pathogens such as Campylobacter species, non-Typhi serotypes of Salmonella enterica, Shiga toxin-producing strains of Escherichia coli, and Listeria monocytogenes. The zoonotic potential of foodborne pathogens and their ability to produce toxins causing diseases or even death are sufficient to recognize the seriousness of the situation. This manuscript reviews the evidence that links animals as vehicles of the foodborne pathogens Salmonella, Campylobacter, Shiga toxigenic E. coli, and L. monocytogenes, their impact, and their current status. We conclude that these pathogenic bacteria will continue causing outbreaks and deaths throughout the world, because no effective interventions have eliminated them from animals and food.
The use of natural compounds from plants can provide an alternative approach against food-borne pathogens. The mechanisms of action of most plant extracts with antimicrobial activity have been poorly studied. In this work, changes in membrane integrity, membrane potential, internal pH (pH in ), and ATP synthesis were measured in Vibrio cholerae cells after exposure to extracts of edible and medicinal plants. A preliminary screen of methanolic, ethanolic, and aqueous extracts of medicinal and edible plants was performed. Minimal bactericidal concentrations (MBCs) were measured for extracts showing high antimicrobial activity. Our results indicate that methanolic extracts of basil (Ocimum basilicum L.), nopal cactus (Opuntia ficus-indica var. Villanueva L.), sweet acacia (Acacia farnesiana L.), and white sagebrush (Artemisia ludoviciana Nutt.) are the most active against V. cholera, with MBCs ranging from 0.5 to 3.0 mg/ml. Using four fluorogenic techniques, we studied the membrane integrity of V. cholerae cells after exposure to these four extracts. Extracts from these plants were able to disrupt the cell membranes of V. cholerae cells, causing increased membrane permeability, a clear decrease in cytoplasmic pH, cell membrane hyperpolarization, and a decrease in cellular ATP concentration in all strains tested. These four plant extracts could be studied as future alternatives to control V. cholerae contamination in foods and the diseases associated with this microorganism.
Edible active coatings (EACs) based on pectin, pullulan, and chitosan incorporated with sodium benzoate and potassium sorbate were employed to improve the quality and shelf life of strawberries. Fruits were washed, disinfected, coated by dipping, packed, and stored at 4 °C for 15 d. Application of EACs reduced (P < 0.05) weight loss and fruit softening and delayed alteration of color (redness) and total soluble solids content. In contrast, pH and titratable acidity were not affected (P > 0.05) throughout storage, and ascorbic acid content was maintained in pectin-EAC coated strawberries. Microbiological analyses showed that application of EACs reduced (P < 0.05) microbial growth (total aerobic counts, molds, and yeasts) on strawberries. Chitosan-EAC coated strawberries presented the best results in microbial growth assays. Sensory quality (color, flavor, texture, and acceptance) improved and decay rate decreased (P < 0.05) in pectin-EAC, pullulan-EAC, and chitosan-EAC coated strawberries. In conclusion, EACs based on polysaccharides improved the physicochemical, microbiological, and sensory characteristics, increasing the shelf life of strawberries from 6 (control) to 15 d (coated fruits).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.