Wildlife attacks on humans and economic losses often result in reduced support of local communities for wildlife conservation. Information on spatial and temporal patterns of such losses in the highly affected areas contribute in designing and implementing effective mitigation measures. We analyzed the loss of humans, livestock and property caused by wildlife during 1998 to 2016, using victim family’s reports to Chitwan National Park authorities and Buffer Zone User Committees. A total of 4,014 incidents were recorded including attacks on humans, livestock depredation, property damage and crop raiding caused by 12 wildlife species. In total >400,000 US dollar was paid to the victim families as a relief over the whole period. Most of the attacks on humans were caused by rhino, sloth bear, tiger, elephant, wild boar and leopard. A significantly higher number of conflict incidents caused by rhino and elephant were observed during full moon periods. An increase in the wildlife population did not coincide with an equal rise in conflict incidents reported. Underprivileged ethnic communities were attacked by wildlife more frequently than expected. Number of attacks on humans by carnivores and herbivores did not differ significantly. An insignificant decreasing trend of wildlife attacks on humans and livestock was observed with significant variation over the years. Tiger and leopard caused >90% of livestock depredation. Tigers killed both large (cattle and buffalo) and medium sized (goat, sheep, pig) livestock but leopard mostly killed medium sized livestock. Most (87%) of the livestock killing during 2012–2016 occurred within the stall but close (<500m) to the forest edge. Both the percentage of households with livestock and average holding has decreased over the years in buffer zone. Decreased forest dependency as well as conflict mitigation measures (electric and mesh wire fences) have contributed to keep the conflict incidents in control. Strengthening mitigation measures like construction of electric or mesh wire fences and predator-proof livestock corrals along with educating local communities about wildlife behavior and timely management of problem animals (man-eater tiger, rage elephant etc.) will contribute to reduce the conflict.
Buffer zones around parks/reserves are designed to maintain ecological integrity and to ensure community participation in biodiversity conservation. We studied the fund utilization pattern of buffer zone programs, mitigation measures practiced, and attitudes of residents in buffer zone programs of Chitwan National Park, Nepal. The buffer zone committees spent only a small portion (13.7%) of their budget in direct interventions to reduce wildlife impacts. Human-wildlife conflicts were inversely related to investment in direct interventions for conflict prevention and mitigation. Peoples' attitudes towards wildlife conservation were largely positive. Most of the people were aware of buffer zone programs but were not satisfied with current practices. We recommend that buffer zone funds be concentrated into direct interventions (prevention and mitigation) to reduce wildlife conflicts. Our findings will be helpful in prioritizing distribution of funds in buffer zones of parks and reserves.
[1] In this paper we examine the response of the ionospheric cross-polar cap potential to steady, purely northward interplanetary magnetic field (IMF) using the Lyon-FedderMobarry global magnetohydrodynamic simulation of the Earth's magnetosphere. The simulation produces the typical, high-latitude "reversed cell" convection that is associated with northward IMF, along with a two cell convection pattern at lower latitude that we interpret as being driven by the viscous interaction. The behavior of the potential can be divided into two basic regions: the viscous dominated region and the reconnection dominated region. The viscous dominated region is characterized by decreasing viscous potential with increasing northward IMF. The reconnection dominated region may be further subdivided into a linear region, where reconnection potential increases with increasing magnitude of northward IMF, and the saturation region, where the value of the reconnection potential is relatively insensitive to the magnitude of the northward IMF. The saturation of the cross-polar cap potential for northward IMF has recently been documented using observations and is here established as a feature of a global MHD simulation as well. The region at which the response of the potential transitions from the linear region to the saturation region is also the region in parameter space at which the magnetosheath transitions from being dominated by the plasma pressure to being dominated by the magnetic energy density. This result is supportive of the recent magnetosheath force balance model for the modulation of the reconnection potential. Within that framework, and including our current understanding of the viscous potential, we present a conceptual model for understanding the full variation of the polar cap potential for northward IMF, including the simulated dependencies of the potential on solar wind speed and ionospheric conductivity.
[1] The two primary methods responsible for solar wind magnetosphere coupling are magnetic reconnection and the viscous interaction. The viscous interaction is generated due to the antisunward dragging of plasma inside the magnetopause by the plasma flowing in the magnetosheath, creating a return flow deeper inside the magnetosphere and producing a circulation pattern. This viscous circulation pattern is mapped into the ionosphere via magnetic field lines, which results in ionospheric electric field in the nonrotating Earth's frame. We measure this interaction in terms of an electric potential, the viscous potential. In this paper, we use the results obtained from the Lyon-Fedder-Mobarry (LFM) simulation model during periods of purely northward interplanetary magnetic field (IMF) for different solar wind velocity and ionospheric conductivity, showing a reduction of the viscous potential with increasing magnitude of northward IMF. The viscous potential is found to settle around 5-10 kV for large +B z values. The decrease in viscous potential was found to be associated with a weak or nonexistent sunward plasma flow in the nightside plasmasheet. Instead, the return flow to the dayside occurs at high latitudes and is associated with the reconnection topology and dynamics that occur during northward IMF periods. We also show that the magnetosphere remains closed during purely northward IMF, except for two small regions-one on each hemisphere, where the magnetic reconnection occur. We argue that the reduction of the viscous potential is due to a reduction of the velocity shear across the magnetopause and the lack of sunward convection in the equatorial tail.Citation: Bhattarai, S. K., and R. E. Lopez (2013), Reduction of viscous potential for northward interplanetary magnetic field as seen in the LFM simulation,
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.