Task scheduling and load balancing are a concern for service providers in the cloud computing environment. The problem of scheduling tasks and balancing loads in a cloud is categorized under an NP-hard problem. Thus, it needs an efficient load scheduling algorithm that not only allocates the tasks onto appropriate VMs but also maintains the trade-off amidst VMs. It should keep an equilibrium among VMs in a way that reduces the makespan while maximizing the utilization of resources and throughput. In response to it, the authors propose a load balancing algorithm inspired by the mimicking behavior of a flock of birds, which is called the Bird Swarm Optimization Load Balancing (BSO-LB) algorithm that considers tasks as birds and VMs as destination food patches. In the considered cloud simulation environment, tasks are assumed to be independent and non-preemptive. To evaluate the efficacy of the proposed algorithm under real workloads, the authors consider a dataset (GoCJ) logged by Goggle in 2018 for the execution of cloudlets. The proposed algorithm aims to enhance the overall system performance by reducing response time and keeping the whole system balanced. The authors have integrated the binary variant of the BSO algorithm with the load balancing method. The proposed technique is analyzed and compared with other existing load balancing algorithms such as MAX-MIN, RASA, Improved PSO, and other scheduling algorithms as FCFS, SJF, and RR. The experimental results show that the proposed method outperforms when being compared with the different algorithms mentioned above. It is noteworthy that the proposed approach illustrates an improvement in resource utilization and reduces the makespan of tasks.
This article describes how breast cancer is the most common invasive cancer in females worldwide and is major cause of deaths. The diagnoses of breast cancer include mammograms, breast ultrasound, magnetic resonance imaging (MRI), ductogram and biopsy. Biopsy is best and only way to know if the breast tumour is cancerous. Reports say that positive detection of breast cancer through biopsy can reach as low as 10%. So many statistical techniques and cognitive science approaches like artificial intelligence are being used to detect the type of breast cancer in a patient. This article presents the breast cancer classification using a feed foreword neural network trained by a sine-cosine algorithm. The superiority of the SCA-NN is shown by experimenting on the Wisconsin Hospital data set and comparing with the recently reported results. The evaluations show that the proposed approach is very robust, effective and gives better correct classification as compared to other classifiers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.