The spike (S) protein of severe acute respiratory syndrome-associated coronavirus-2 (SARS-CoV-2) mediates a critical stage in infection, the fusion between viral and host membranes. The protein is categorized as a class I viral fusion protein and has two distinct cleavage sites that can be activated by proteases. The activation deploys the fusion peptide (FP) for insertion into the target cell membranes. Recent studies including our experiments showed that the FP was unable to modulate the kinetics of fusion at a low peptide-to-lipid ratio akin to the spike density at the viral surface. Therefore, we modified the C terminus of FP and attached a myristoyl chain (C-myr-FP) to restrict the C terminus near to the interface, bridge both membranes, and increase the effective local concentration. The lipidated FP (Cmyr-FP) of SARS-CoV-2 greatly accelerates membrane fusion at a low peptide-to-lipid ratio as compared to the FP with no lipidation. Biophysical experiments suggest that C-myr-FP adopts a helical structure, perturbs the membrane interface, and increases water penetration to catalyze fusion. Scrambled peptide (C-myr-sFP) and truncated peptide (C-myr-8FP) could not significantly catalyze the fusion, thus suggesting the important role of myristoylation and the N terminus. C-myr-FP enhances murine coronavirus infection by promoting syncytia formation in L2 cells. The C-terminal lipidation of the FP might be a useful strategy to induce artificial fusion in biomedical applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.