Explaining patterns of commonness and rarity is fundamental for understanding and managing biodiversity. Consequently, a key test of biodiversity theory has been how well ecological models reproduce empirical distributions of species abundances. However, ecological models with very different assumptions can predict similar species abundance distributions, whereas models with similar assumptions may generate very different predictions. This complicates inferring processes driving community structure from model fits to data. Here, we use an approximation that captures common features of "neutral" biodiversity models-which assume ecological equivalence of species-to test whether neutrality is consistent with patterns of commonness and rarity in the marine biosphere. We do this by analyzing 1,185 species abundance distributions from 14 marine ecosystems ranging from intertidal habitats to abyssal depths, and from the tropics to polar regions. Neutrality performs substantially worse than a classical nonneutral alternative: empirical data consistently show greater heterogeneity of species abundances than expected under neutrality. Poor performance of neutral theory is driven by its consistent inability to capture the dominance of the communities' most-abundant species. Previous tests showing poor performance of a neutral model for a particular system often have been followed by controversy about whether an alternative formulation of neutral theory could explain the data after all. However, our approach focuses on common features of neutral models, revealing discrepancies with a broad range of empirical abundance distributions. These findings highlight the need for biodiversity theory in which ecological differences among species, such as niche differences and demographic trade-offs, play a central role.etermining how biodiversity is maintained in ecological communities is a long-standing ecological problem. In species-poor communities, niche and demographic differences between species can often be estimated directly and used to infer the importance of alternative mechanisms of species coexistence (1-3). However, the "curse of dimensionality" prevents the application of such species-by-species approaches to high-diversity assemblages: the number of parameters in community dynamics models increases more rapidly than the amount of data, as species richness increases. Moreover, most species in high-diversity assemblages are very rare, further complicating the estimation of strengths of ecological interactions among species, or covariation in different species' responses to environmental fluctuations. Consequently, ecologists have focused instead on making assumptions about the overall distribution of demographic rates, niche sizes, or other characteristics of an assemblage, and then deriving the aggregate assemblage properties implied by those assumptions (4-8). One of the most commonly investigated of these assemblage-level properties is the species abundance distribution (SAD)-the pattern of commonness and rarity among ...
We collected surface sediment samples from 174 locations in India, Indonesia, Malaysia, Thailand, Vietnam, Cambodia, Laos, and the Philippines and analyzed them for polycyclic aromatic hydrocarbons (PAHs) and hopanes. PAHs were widely distributed in the sediments, with comparatively higher concentrations in urban areas (Sigma PAHs: approximately 1000 to approximately 100,000 ng/g-dry) than in rural areas ( approximately 10 to approximately 100g-dry), indicating large sources of PAHs in urban areas. To distinguish petrogenic and pyrogenic sources of PAHs, we calculated the ratios of alkyl PAHs to parent PAHs: methylphenanthrenes to phenanthrene (MP/P), methylpyrenes+methylfluoranthenes to pyrene+fluoranthene (MPy/Py), and methylchrysenes+methylbenz[a]anthracenes to chrysene+benz[a]anthracene (MC/C). Analysis of source materials (crude oil, automobile exhaust, and coal and wood combustion products) gave thresholds of MP/P=0.4, MPy/Py=0.5, and MC/C=1.0 for exclusive combustion origin. All the combustion product samples had the ratios of alkyl PAHs to parent PAHs below these threshold values. Contributions of petrogenic and pyrogenic sources to the sedimentary PAHs were uneven among the homologs: the phenanthrene series had a greater petrogenic contribution, whereas the chrysene series had a greater pyrogenic contribution. All the Indian sediments showed a strong pyrogenic signature with MP/P approximately 0.5, MPy/Py approximately 0.1, and MC/C approximately 0.2, together with depletion of hopanes indicating intensive inputs of combustion products of coal and/or wood, probably due to the heavy dependence on these fuels as sources of energy. In contrast, sedimentary PAHs from all other tropical Asian cities were abundant in alkylated PAHs with MP/P approximately 1-4, MPy/Py approximately 0.3-1, and MC/C approximately 0.2-1.0, suggesting a ubiquitous input of petrogenic PAHs. Petrogenic contributions to PAH homologs varied among the countries: largest in Malaysia whereas inferior in Laos. The higher abundance of alkylated PAHs together with constant hopane profiles suggests widespread inputs of automobile-derived petrogenic PAHs to Asian waters.
Although fish, crustacean, and shellfish are significant sources of protein, they are currently affected by rapid industrialization, resulting in increased concentrations of heavy metals. Accumulation of heavy metals (V, Cr, Mn, Ni, Cu, Zn, As, Se, Mo, Ag, Cd, Sb, Ba, and Pb) and associated human health risk were investigated in three fish species, namely Ailia coila, Gagata youssoufi, and Mastacembelus pancalus; one crustacean (prawn), Macrobrachium rosenbergii; and one Gastropoda, Indoplanorbis exustus, collected from the Buriganga River, Bangladesh. Samples were collected from the professional fishermen. Cu was the most accumulated metal in M. rosenbergii. Ni, As, Ag, and Sb were in relatively lower concentrations, whereas relatively higher accumulation of Cr, Mn, Zn, and Se were recorded. Mn, Zn, and Pb were present in higher concentrations than the guidelines of various authorities. There were significant differences in metal accumulation among different fish, prawn, or shellfish species. Target hazard quotient (THQ) and target cancer risk (TR) were calculated to estimate the non-carcinogenic and carcinogenic health risks, respectively. The THQ for individual heavy metals were below 1 suggesting no potential health risk. But combined impact, estimated by hazard index (HI), suggested health risk for M. pancalus consumption. Although consumption of fish at current accumulation level is safe but continuous and excess consumption for a life time of more than 70 years has probability of target cancer risk.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.