The optimal perioperative duration for the administration of cefazolin and other prophylactic antibiotics remains unclear. This study aimed to describe the pharmacodynamics of cefazolin for a single 2 g dose versus a 24 h course of a 2 g single dose plus a 1 g eight-hourly regimen against methicillin-susceptible Staphylococcus aureus. Static concentration time–kill assay and a dynamic in vitro hollow-fibre infection model simulating humanised plasma and interstitial fluid exposures of cefazolin were used to characterise the pharmacodynamics of prophylactic cefazolin regimens against methicillin-sensitive Staphylococcus aureus clinical isolates. The initial inoculum was 1 × 105 CFU/mL to mimic a high skin flora inoculum. The static time–kill study showed that increasing the cefazolin concentration above 1 mg/L (the MIC) did not increase the rate or the extent of bacterial killing. In the dynamic hollow-fibre model, both dosing regimens achieved similar bacterial killing (~3-log CFU/mL within 24 h). A single 2 g dose may be adequate when low bacterial burdens (~104 CFU/mL) are anticipated in an immunocompetent patient with normal pharmacokinetics.
For patients undergoing cardiopulmonary bypass (CPB) during cardiac surgery, there are well-documented changes in the pharmacokinetics (PK) of commonly administered drugs. Although multiple factors potentially underpin these changes, there has been scant research attention on the impact of CPB to alter the activities of cytochrome P450 (CYP) isoenzymes. PK changes during cardiac surgery with CPB have the potential to adversely affect the safety and efficacy of pharmacotherapy and increase the risk of drug-drug interactions. Clinically significant changes in drug PK during CPB are likely to be prominent for drugs where CYP metabolism is a major clearance (CL) mechanism. However, clinical data from patients undergoing CPB surgery in support of this hypothesis are lacking, leaving a significant knowledge gap. In this review, we address the effects of CPB on the release of pro-inflammatory cytokines, in surgeries with and without CPB, both pre and post initiation of surgery. We reviewed literature to explore the relationship between the release of pro-inflammatory cytokines, and the expression and activities of CYP enzymes. Through this approach, we provide new insight on the effects of CPB on the PK of drugs administered to patients in the clinical setting. Future research to address this knowledge gap will have considerable impact to assist clinicians with optimizing pharmacotherapy in this patient population.
Small sample volume and dose of cytochrome P450 substrates, short-run time, using stable isotope internal standards and being cost effective are the major advantages of the assay.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.