Objective: This study was designed for the characterization and establishment of antibiotic susceptibility profiles of non-fermentative gram negative bacteria isolated from hospitalized patients in a tertiary care hospital of Nepal. Results: A total of 402 non-fermentative gram negative bacteria was isolated in 1486 culture-positive cases from 6216 different clinical samples obtained from hospitalized patients. Among total non-fermentative gram negative bacterial isolates, the highest number was recovered from specimens collected from lower respiratory tract infections (n = 173, 43.0%) of hospitalized patients followed by pus/swab samples (n = 99, 24.6%) and urinary tract infections (n = 49, 12.2%). The most common non-fermentative gram negative bacteria identified were Acinetobacter baumannii (n = 177, 44.0%), Pseudomonas aeruginosa (n = 161, 40.1%) and Burkholderia cepacia complex (n = 33, 8.2%). These bacterial isolates exhibited a higher rate of insusceptibility to beta-lactam antibiotics, fluoroquinolones, and aminoglycosides. On the other hand, all the isolates of P. aeruginosa and A. baumannii were completely susceptible to colistin sulfate and polymyxin B. Among total isolates, 78.1% (n = 314) were multidrug-resistant with a high rate of multidrugresistant among A. baumannii (91.0%).
The transient contamination of medical professional’s attires including white coats is one of the major vehicles for the horizontal transmission of microorganisms in the hospital environment. This study was carried out to determine the degree of contamination by bacterial agents on the white coats in a tertiary care hospital in Nepal. Sterilized uniforms with fabric patches of 10 cm × 15 cm size attached to the right and left pockets were distributed to 12 nurses of six different wards of a teaching hospital at the beginning of their work shift. Worn coats were collected at the end of the shifts and the patches were subjected for total bacterial count and identification of selected bacterial pathogens, as prioritized by the World Health Organization (WHO). Fifty percent of the sampled swatches were found to be contaminated by pathogenic bacteria. The average colony growth per square inch of the patch was 524 and 857 during first and second workdays, respectively, indicating an increase of 63.6% in colony counts. The pathogens detected on patches were Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Acinetobacter sp. Additional bacteria identified included Bacillus sp., Micrococcus sp., and coagulase-negative staphylococci (CoNS). The nurses working in the maternity department had their white coats highly contaminated with bacteria. On the other hand, the least bacterial contamination was recorded from the nurses of the surgery ward. One S. aureus isolate from the maternity ward was resistant to methicillin. This study showed that pathogens belonging to the WHO list of critical priority and high priority have been isolated from white coats of nurses, thus posing the risk of transmission to patients. White coats must be worn, maintained, and washed properly to reduce bacterial contamination load and to prevent cross-contamination of potential superbugs. The practice of wearing white coats outside the healthcare zone should be strictly discouraged.
Background The most common pathological cause of abnormal vaginal discharge in reproductive-aged women is bacterial vaginosis (BV). Amsel’s criteria and Nugent scoring systems are commonly employed approaches for the diagnosis of BV. Despite the Nugent scoring system being the gold standard method for diagnosing BV, Amsel’s criteria are generally preferred in clinical setup owing to the fact Nugent scoring requires considerable time and expert microscopist. This study was conducted to determine the diagnostic value of Amsel’s criteria by comparing it with the Nugent scoring system. Methods This was a descriptive cross-sectional study conducted at Tribhuvan University Teaching Hospital, Nepal from October 2016 to September 2017. Vaginal specimens were collected from a total of 141 women presenting with abnormal vaginal discharge. The sensitivity, specificity, positive predictive value, and negative predictive value of Amsel’s criteria were calculated, and each component of Amsel’s criteria was compared to the Nugent scoring system. Results The sensitivity, specificity, positive predictive value, and negative predictive value of Amsel’s criteria were 50%, 98.2%, 87.5%, and 88.8% respectively. The clue cells showed 100% specificity and vaginal discharge with pH > 4.5 had 89.3% sensitivity while compared with Nugent’s scoring system. Conclusions Amsel’s criteria can be used as an adjunct method to Nugent scoring for the diagnosis of BV in the hands of skilled manpower in resources limited countries. The presence of clue cell and positive whiff test of Amsel’s criteria shows good match with Nugent’s score.
Introduction In this era of modern medicine, antimicrobial resistance can be regarded as a major health calamity. The emergence of multidrug-resistant (MDR) Pseudomonas aeruginosa strains poses therapeutic challenges and lead to treatment failure in hospitalized patients. This study was conducted to determine various types of β-lactamases among MDR P. aeruginosa isolates recovered from hospitalized patients. MethodsThis study was conducted at Tribhuvan University Teaching Hospital, Maharajgunj, Nepal. The clinical samples collected from inpatients were processed for detection of P. aeruginosa isolates and antibiotic susceptibility profile was determined. The MDR strains were identified and ceftazidime-resistant isolates were subjected for detection of extended-spectrum-β-lactamase (ESBL), metallo-β-lactamase (MBL), and Klebsiella pneumoniae carbapenemase (KPC). ResultsA total of 161 P. aeruginosa isolates were recovered during the study period encompassing 73.3% (n=118) MDR isolates. The MDR isolates included 50.0% (n=59) from lower respiratory tract infections; and 39.8% (n=47) were from the intensive care unit patients. The MDR isolates showed a high resistance profile towards piperacillin, cephalosporins, and fluoroquinolones (>85%). Resistance to carbapenems and aminoglycosides were up to 80% and 60% respectively. Extended spectrum-β-lactamase, MBL, and KPC mediated resistance were seen in 34.7%, 43.6%, and 14.4% MDR isolates, respectively. ConclusionMultidrug resistance as well as resistance mediated by β-lactamases production were high among P. aeruginosa isolates. Therefore, early detection of antimicrobial resistance and rational use of antibiotics play a critical role to fight against this MDR pathogen.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.