BackgroundThe aims of this study were to characterize the metabolite profiles of triple negative breast cancer (TNBC) and to investigate the metabolite profiles associated with human epidermal growth factor receptor-2/neu (HER-2) overexpression using ex vivo high resolution magic angle spinning magnetic resonance spectroscopy (HR MAS MRS). Metabolic alterations caused by the different estrogen receptor (ER), progesterone receptor (PgR) and HER-2 receptor statuses were also examined. To investigate the metabolic differences between two distinct receptor groups, TNBC tumors were compared to tumors with ERpos/PgRpos/HER-2pos status which for the sake of simplicity is called triple positive breast cancer (TPBC).MethodsThe study included 75 breast cancer patients without known distant metastases. HR MAS MRS was performed for identification and quantification of the metabolite content in the tumors. Multivariate partial least squares discriminant analysis (PLS-DA) modeling and relative metabolite quantification were used to analyze the MR data.ResultsCholine levels were found to be higher in TNBC compared to TPBC tumors, possibly related to cell proliferation and oncogenic signaling. In addition, TNBC tumors contain a lower level of Glutamine and a higher level of Glutamate compared to TPBC tumors, which indicate an increase in glutaminolysis metabolism. The development of glutamine dependent cell growth or “Glutamine addiction” has been suggested as a new therapeutic target in cancer. Our results show that the metabolite profiles associated with HER-2 overexpression may affect the metabolic characterization of TNBC. High Glycine levels were found in HER-2pos tumors, which support Glycine as potential marker for tumor aggressiveness.ConclusionsMetabolic alterations caused by the individual and combined receptors involved in breast cancer progression can provide a better understanding of the biochemical changes underlying the different breast cancer subtypes. Studies are needed to validate the potential of metabolic markers as targets for personalized treatment of breast cancer subtypes.
BackgroundThe heterogeneous biology of breast cancer leads to high diversity in prognosis and response to treatment, even for patients with similar clinical diagnosis, histology, and stage of disease. Identifying mechanisms contributing to this heterogeneity may reveal new cancer targets or clinically relevant subgroups for treatment stratification. In this study, we have merged metabolite, protein, and gene expression data from breast cancer patients to examine the heterogeneity at a molecular level.MethodsThe study included primary tumor samples from 228 non-treated breast cancer patients. High-resolution magic-angle spinning magnetic resonance spectroscopy (HR MAS MRS) was performed to extract the tumors metabolic profiles further used for hierarchical cluster analysis resulting in three significantly different metabolic clusters (Mc1, Mc2, and Mc3). The clusters were further combined with gene and protein expression data.ResultsOur result revealed distinct differences in the metabolic profile of the three metabolic clusters. Among the most interesting differences, Mc1 had the highest levels of glycerophosphocholine (GPC) and phosphocholine (PCho), Mc2 had the highest levels of glucose, and Mc3 had the highest levels of lactate and alanine. Integrated pathway analysis of metabolite and gene expression data uncovered differences in glycolysis/gluconeogenesis and glycerophospholipid metabolism between the clusters. All three clusters had significant differences in the distribution of protein subtypes classified by the expression of breast cancer-related proteins. Genes related to collagens and extracellular matrix were downregulated in Mc1 and consequently upregulated in Mc2 and Mc3, underpinning the differences in protein subtypes within the metabolic clusters. Genetic subtypes were evenly distributed among the three metabolic clusters and could therefore contribute to additional explanation of breast cancer heterogeneity.ConclusionsThree naturally occurring metabolic clusters of breast cancer were detected among primary tumors from non-treated breast cancer patients. The clusters expressed differences in breast cancer-related protein as well as genes related to extracellular matrix and metabolic pathways known to be aberrant in cancer. Analyses of metabolic activity combined with gene and protein expression provide new information about the heterogeneity of breast tumors and, importantly, the metabolic differences infer that the clusters may be susceptible to different metabolically targeted drugs.Electronic supplementary materialThe online version of this article (doi:10.1186/s40170-016-0152-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.