Brown rust (caused by Puccinia melanocephala) and orange rust (caused by P. kuehnii) are two major diseases of sugarcane in Florida. To better understand the epidemiology of these two rusts, disease severity and weather variables were monitored for two seasons in cultivars CL90-4725 (susceptible to brown rust and resistant to orange rust) and CL85-1040 (susceptible to orange rust and resistant to brown rust). Brown rust was most severe during mid-May to mid-July, whereas orange rust severity peaked during two periods: mid-May to early August and then November to December. Overall, disease severity was higher for orange rust than for brown rust. Maximum disease severity was correlated with the number of hours at night with an average temperature of 20 to 22.2°C for brown rust one season and orange rust both seasons. Slightly higher correlation was obtained when relative humidity above 90% was included in the number of hours at night with an average temperature of 20 to 22.2°C for brown rust but not orange rust, suggesting that leaf wetness is not a limiting factor for either disease in Florida. Epidemics of brown rust began at lower night temperatures (16.7 to 22.2°C) in one season, but epidemics of orange rust lasted longer under higher temperatures. The correlation of rust severity on recently emerged leaves with conducive temperatures recorded in 10-, 20-, or 30-day windows starting 7 days before disease assessment suggested that earlier inoculum production is needed to create severe epidemics that result in yield loss.
Peanuts grown in tropical, subtropical, and temperate regions are susceptible to stem rot, which is a soil-borne disease caused by Athelia rolfsii. Due to the lack of reliable environmental-based scheduling recommendations, stem rot control relies heavily on fungicides that are applied at predetermined intervals. We conducted inoculated field experiments for six site-years in North Florida, USA, to examine the relationship between germination of A. rolfsii sclerotia: the inoculum, stem rot symptom development in the peanut crop, and environmental factors such as soil temperature (ST), soil moisture, relative humidity (RH), precipitation, evapotranspiration, and solar radiation. Window-pane analysis with hourly and daily environmental data for 5- to 28- day periods before each disease assessment were evaluated to select model predictors using correlation analysis, regularized regression and exhaustive feature selection. Our results indicated that within-canopy ST (at 0.05 m below ground) and RH (at 0.15 m above ground) were the most important environmental variables that influenced the progress of mycelial activity in susceptible peanut crops. Decision tree analysis resulted in an easy-to-interpret one-variable model (Adj R2 0.51, AIC 324, RASE 14.21) or two-variable model (Adj. R2 0.61, AIC 306, RASE 10.95) that provided an action threshold for various disease scenarios based on number of hours of canopy RH above 90% and ST between 25-35°C on a 14-day window. Coupling an existing preseason risk index for stem rot, such as Peanut Rx, with the environmentally based predictors identified in this study would be a logical next step to optimize stem rot management.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.