Triggering receptor expressed on myeloid cells 2 (TREM2) is an immune receptor expressed on the surface of microglia, macrophages, dendritic cells, and osteoclasts. The R47H TREM2 variant is a significant risk factor for late-onset Alzheimer's disease (AD), and the molecular basis of R47H TREM2 loss of function is an emerging area of TREM2 biology. Here, we report three high-resolution structures of the extracellular ligand-binding domains (ECDs) of R47H TREM2, apo-WT, and phosphatidylserine (PS)-bound WT TREM2 at 1.8, 2.2, and 2.2 Å, respectively. The structures reveal that Arg plays a critical role in maintaining the structural features of the complementarity-determining region 2 (CDR2) loop and the putative positive ligand-interacting surface (PLIS), stabilizing conformations capable of ligand interaction. This is exemplified in the PS-bound structure, in which the CDR2 loop and PLIS drive critical interactions with PS via surfaces that are disrupted in the variant. Together with and characterization, our structural findings elucidate the molecular mechanism underlying loss of ligand binding, putative oligomerization, and functional activity of R47H TREM2. They also help unravel how decreased and stability of TREM2 contribute to loss of function in disease.
Triggering receptor expressed on myeloid cells 2 (TREM2) is an orphan immune receptor expressed on cells of myeloid lineage such as macrophages and microglia. The rare variant R47H TREM2 is associated with an increased risk for Alzheimer's disease, supporting the hypothesis that TREM2 loss of function may exacerbate disease progression. However, a complete knockout of the gene in different genetic models of neurodegenerative diseases has been reported to result in both protective and deleterious effects on disease-related end points and myeloid cell function. Here, we describe a transgenic mouse model and report that even in the absence of additional genetic perturbations, this variant clearly confers a loss of function on myeloid cells. The variant-containing myeloid cells exhibited subtle defects in survival and migration and displayed an unexpected dysregulation of cytokine responses in a lipopolysaccharide challenge environment. These subtle phenotypic defects with a gradation in severity across genotypes were confirmed in whole-genome RNA-Seq analyses of WT,, and myeloid cells under challenge conditions. Of note, TREM2-activating antibodies that boost proximal signaling abrogated survival defects conferred by the variant and also modulated migration and cytokine responses in an antibody-, ligand-, and challenge-dependent manner. In some instances, these antibodies also boosted WT myeloid cell function. Our studies provide a first glimpse into the boost in myeloid cell function that can be achieved by pharmacological modulation of TREM2 activity that can potentially be ameliorative in neurodegenerative diseases such as Alzheimer's disease.
A radiolabeled tracer for imaging therapeutic targets in the brain is a valuable tool for lead optimization in CNS drug discovery and for dose selection in clinical development. We report the rapid identification of a novel phosphodiesterase 10A (PDE10A) tracer candidate using a LC-MS/MS technology. This structurally distinct PDE10A tracer, AMG-7980 (5), has been shown to have good uptake in the striatum (1.2% ID/g tissue), high specificity (striatum/thalamus ratio of 10), and saturable binding in vivo. The PDE10A affinity (K(D)) and PDE10A target density (B(max)) were determined to be 0.94 nM and 2.3 pmol/mg protein, respectively, using [(3)H]5 on rat striatum homogenate. Autoradiography on rat brain sections indicated that the tracer signal was consistent with known PDE10A expression pattern. The specific binding of [(3)H]5 to rat brain was blocked by another structurally distinct, published PDE10A inhibitor, MP-10. Lastly, our tracer was used to measure in vivo PDE10A target occupancy of a PDE10A inhibitor in rats using LC-MS/MS technology.
Phosphodiesterase 10A (PDE10A) inhibitors have therapeutic potential for the treatment of psychiatric and neurologic disorders, such as schizophrenia and Huntington's disease. One of the key requirements for successful central nervous system drug development is to demonstrate target coverage of therapeutic candidates in brain for lead optimization in the drug discovery phase and for assisting dose selection in clinical development. Therefore, we identified AMG 580 [1-(4-(3-(4-(1H-benzo[d] imidazole-2-carbonyl)phenoxy)pyrazin-2-yl)piperidin-1-yl)-2-fluoropropan-1-one], a novel, selective small-molecule antagonist with subnanomolar affinity for rat, primate, and human PDE10A. We showed that AMG 580 is suitable as a tracer for lead optimization to determine target coverage by novel PDE10A inhibitors using triple-stage quadrupole liquid chromatography-tandem mass spectrometry technology. [ 3 H]AMG 580 bound with high affinity in a specific and saturable manner to both striatal homogenates and brain slices from rats, baboons, and human in vitro. Moreover, [18 F]AMG 580 demonstrated prominent uptake by positron emission tomography in rats, suggesting that radiolabeled AMG 580 may be suitable for further development as a noninvasive radiotracer for target coverage measurements in clinical studies. These results indicate that AMG 580 is a potential imaging biomarker for mapping PDE10A distribution and ensuring target coverage by therapeutic PDE10A inhibitors in clinical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.