<span><span>Blinking is a regular bodily function and it is the semiautomatic fast closing of the eyelid. A specific blink is examined by dynamic folding of the eyelid. It is a vital function of the eye which helps in spread of tears across and eliminates irritants from the shallow of cornea. In this research work we made use of convolution neural network, the deep learning concepts and image processing to detect drowsiness level in drivers. To train the blink detection model the mobilenet V2 is used as base. The loss function used for training was RMSprop and the optimizer is binary cross entropy. The dlib facial landmark was exploited to perceive and pre-process the detected faces. The dataset used for the training model is selected from the “Xiaoyang Tan” of nanjing university of aeronautics and astronautics. Based on the experimental outcome the projected method achieves an accuracy of 97%. The prototype developed serves as a base for further development of this process to achieve better road safety</span>.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.