Solid-state refrigeration technology based on caloric effects are promising to replace the currently used vapor compression cycles. However, their application is restricted due to limited performances of caloric materials. Here, we have identified colossal barocaloric effects (CBCEs) in a class of disordered solids called plastic crystals. The obtained entropy changes are about 380 J kg -1 K -1 in the representative neopentylglycol around room temperature. Inelastic neutron scattering reveals that the CBCEs in plastic crystals are attributed to the combination of the vast molecular orientational disorder, giant compressibility and high anharmonic lattice dynamics. Our study establishes the microscopic scenario for CBCEs in plastic crystals and paves a new route to the next-generation solid-state refrigeration technology.
The density of liquid iron has been determined up to 116 GPa and 4350 K via static compression experiments following an innovative analysis of diffuse scattering from liquid. The longitudinal sound velocity was also obtained to 45 GPa and 2700 K based on inelastic x-ray scattering measurements. Combining these results with previous shock-wave data, we determine a thermal equation of state for liquid iron. It indicates that the Earth's outer core exhibits 7.5-7.6% density deficit, 3.7-4.4% velocity excess, and an almost identical adiabatic bulk modulus, with respect to liquid iron. Main text
An overview of the recently renovated high-pressure X-ray diffraction (XRD) BL10XU beamline for the diamond anvil cell at SPring-8 is presented. The renovation includes the replacement of the X-ray source and monochromator, enhanced focusing systems for high-energy XRD, and recent progress in the sample environment control techniques that are available for high-pressure studies. Other simultaneous measurement techniques for combination with XRD, such as Raman scattering spectroscopy and Mössbauer spectroscopy, have been developed to obtain complementary information under extreme conditions. These advanced techniques are expected to make significant contributions to in-depth understanding of various and complicated high-pressure phenomena. The experience gained with the BL10XU beamline could help promote high-pressure research in future synchrotron radiation facilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.