Targeted gene expression is a powerful approach to study the function of genes and cells in vivo. In Drosophila, the P elementmediated Gal4-UAS method has been successfully used for this purpose. However, similar methods have not been established in vertebrates. Here we report the development of a targeted gene expression methodology in zebrafish based on the Tol2 transposable element and its application to the functional study of neural circuits. First, we developed gene trap and enhancer trap constructs carrying an engineered yeast Gal4 transcription activator (Gal4FF) and transgenic reporter fish carrying the GFP or the RFP gene downstream of the Gal4 recognition sequence (UAS) and showed that the Gal4FF can activate transcription through UAS in zebrafish. Second, by using this Gal4FF-UAS system, we performed large-scale screens and generated a large collection of fish lines that expressed Gal4FF in specific tissues, cells, and organs. Finally, we developed transgenic effector fish carrying the tetanus toxin light chain (TeTxLC) gene downstream of UAS, which is known to block synaptic transmission. We crossed the Gal4FF fish with the UAS:TeTxLC fish and analyzed double transgenic embryos for defects in touch response. From this analysis, we discovered that targeted expression of TeTxLC in distinct populations of neurons in the brain and the spinal cord caused distinct abnormalities in the touch response behavior. These studies illustrate that our Gal4FF gene trap and enhancer trap methods should be an important resource for genetic analysis of neuronal functions and behavior in vertebrates.targeted gene expression ͉ Gal4-UAS ͉ tetanus toxin ͉ touch response ͉ interneuron
Gene trap and enhancer trap methods using transposon or retrovirus have been recently described in zebrafish. However, insertional mutants using these methods have not been reported. We report here development of an enhancer trap method by using the Tol2 transposable element and identification and characterization of insertional mutants. We created 73 fish lines that carried single copy insertions of an enhancer trap construct, which contained the zebrafish hsp70 promoter and the GFP gene, in their genome and expressed GFP in specific cells, tissues and organs, indicating that the hsp70 promoter is highly capable of responding to chromosomal enhancers. First, we analyzed genomic DNA surrounding these insertions. Fifty-one of them were mapped onto the current version of the genomic sequence and 43% (22/51) were located within transcribed regions, either exons or introns. Then, we crossed heterozygous fish carrying the same insertions and identified two insertions that caused recessive mutant phenotypes. One disrupted the tcf7 gene, which encodes a transcription factor of the Tcf/Lef family mediating Wnt signaling, and caused shorter and wavy median fin folds and pectoral fins. We knocked down Lef1, another member of the Tcf/Lef family also expressed in the fin bud, in the tcf7 mutant, and revealed functional redundancy of these factors and their essential role in establishment of the apical ectodermal ridge (AER). The other disrupted the synembryn-like gene (synbl), a homolog of the C. elegans synembryn gene, and caused embryonic lethality and small pigment spots. The pigment phenotype was rescued by application of forskolin, an activator of adenylyl cyclase, suggesting that the synbl gene activates the G␣ S pathway leading to activation of adenylyl cyclase. We thus demonstrated that the transposon-mediated enhancer trap approach can indeed create insertional mutations in developmental genes. Our present study provides a basis for the development of efficient transposonmediated insertional mutagenesis in a vertebrate.
Members of the Rh glycoprotein family have been shown to be involved in ammonia transport in a variety of species. Here we show that zebrafish Rhcg1, a member of the Rh glycoprotein family, is highly expressed in the yolk sac, gill, and renal tubules. Molecular cloning and characterization indicate that zebrafish Rhcg1 shares 82% sequence identity with the pufferfish ortholog fRhcg1. RT-PCR, combined with in situ hybridization, revealed that Rhcg1 is first expressed in vacuolar-type H(+)-ATPase/mitochondrion-rich cells (vH-MRC) on the yolk sac of larvae at 3 days postfertilization (dpf) and later in vH-MRC-like cells in the gill at 4-5 dpf. Ammonia excretion from zebrafish larvae increased in parallel with the expression of Rhcg1. At larval stages, Rhcg1 mRNA was detected only on the yolk sac and gill; however, the kidney, as well as the gill, becomes a major site of Rhcg1 expression in adults. Using a zebrafish Tol2 transgenic line whose vH-MRC are labeled with green fluorescent protein (GFP) and an antibody against zebrafish Rhcg1, we demonstrate that Rhcg1 is located in the apical regions of 1) vH-MRC on the yolk sac and vH-MRC-like cells (cell population with the expression of Rhcg1 and GFP) in the gill and 2) cells in the renal distal tubule and intercalated cell-like cells in the collecting duct of the kidney. Remarkably, expression of Rhcg1 mRNA at the larval stage was changed by environmental ionic strength. These results suggest that roles of zebrafish Rhcg1 are not solely ammonia secretion to eliminate nitrogen from the gill.
Fgf8 is among the members of the fibroblast growth factor (FGF) family that play pivotal roles in vertebrate development. In the present study, the genomic DNA of the zebrafish fgf8 gene was cloned to elucidate the regulatory mechanism behind the temporally and spatially restricted expression of the gene in vertebrate embryos. Structural analysis revealed that the exon-intron organization of fgf8 is highly conserved during vertebrate evolution, from teleosts to mammals. Close inspection of the genomic sequence and reverse transcription-polymerase chain reaction analysis revealed that zebrafish fgf8 encodes two splicing variants, corresponding to Fgf8a and Fgf8b, among the four to seven splicing variants known in mammals. Misexpression of the two variants in zebrafish embryos following mRNA injection showed that both variants have dorsalizing activities on zebrafish embryos, with Fgf8b being more potent. Reporter gene analysis of the transcriptional regulation of zebrafish fgf8 suggested that its complicated expression pattern, which is considered essential for its multiple roles in development, is mediated by combinations of different regulatory regions in the upstream and downstream regions of the gene. Furthermore, comparison of the genomic sequence of fgf8 among different vertebrate species suggests that this regulatory mechanism is conserved during vertebrate evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.