(La0.6Sr0.4)(Co0.2Fe0.8)O3–δ (LSCF) has been promised as a cathode material of solid oxide fuel cells at intermediate temperatures. Despite the many previous studies of LSCF that have been reported, the role of Co and Fe atoms in the oxygen ion conduction is still unclear. In this work, we aimed at presenting each valence, oxygen chemical diffusion coefficient (Dchem) and activation energy (Ea) related to Co and Fe in LSCF by in situ X-ray absorption spectroscopy (XAS) at high temperatures and during reduction. For quantitative analysis of X-ray absorption near edge structure (XANES) spectroscopy, these results indicated that the Co valence decreased more easily than the Fe valence. On the other hand, from relaxation plots of the Co and Fe valence during reduction, the values of Dchem and Ea related to Co and Fe were nearly equal. Considering equations showing the oxygen ion conductivity, these results would indicate that oxygen ion conductivity was contributed by Co with more oxygen vacancies rather than Fe. According to these results, a structural model with and without oxygen vacancies and the oxygen ion conduction mechanism of LSCF was speculated, that is, we found that oxygen ion conductivity was more closely related to Co than Fe in LSCF by direct observations of in situ XAS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.