AVR-Pia, an avirulence gene in the genome of the rice blast fungus Magnaporthe oryzae, triggers a hypersensitive reaction in rice cultivars harbouring the resistance gene Pia. The copy number of AVR-Pia was revealed to vary from one to three among M. oryzae isolates avirulent to Pia rice, and three copies of the gene were located on a single chromosome in strain Ina168, from which the gene was originally cloned. The spontaneous avr-Pia mutant originated from Ina168, named Ina168m95-1, which lacks the AVR-Pia gene, and was therefore used to elucidate the molecular mechanism of the deletion of all three copies of AVR-Pia. Screening and analysis of cosmid clones indicated that two copies of the DNA-type transposon Occan (Occan(9E12) and Occan(3A3) ) were located on the same chromosome, and three copies of AVR-Pia were located in between the two Occan elements. Ina168m95-1 contains a conserved Occan element, named Occan(m95-1) , between sequences homologous to the 5'-flanking region of Occan(3A3) and the 3'-flanking region of Occan(9E12) . In addition, sequence polymorphisms indicated a homologous recombination between Occan(3A3) and Occan(9E12) , which resulted in Occan(m95-1) . Based on these observations, we propose the hypothesis that homologous recombination in the two Occan elements leads to the deletion of AVR-Pia in Ina168m95-1.
In order to facilitate infection, the rice blast pathogen Magnaporthe oryzae secretes an abundance of proteins, including avirulence effectors, to diminish its host's defences. Avirulence effectors are recognized by host resistance proteins and trigger the host's hypersensitive response, which is a rapid and effective form of innate plant immunity. An understanding of the underlying molecular mechanisms of such interactions is crucial for the development of strategies to control disease. However, the expression and secretion of certain effector proteins, such as AVR-Pia, have yet to be reported. Reverse transcription-polymerase chain reaction (RT-PCR) revealed that AVR-Pia was only expressed during infection. Fluorescently labelled AVR-Pia indicated that AVR-Pia expression was induced during appressorial differentiation in the cells of both rice and onion, as well as in a penetration-deficient (Δpls1) mutant capable of developing melanized appressoria, but unable to penetrate host cells, suggesting that AVR-Pia expression is independent of fungal penetration. Using live-cell imaging, we also documented the co-localization of green fluorescent protein (GFP)-labelled AVR-Pia and monomeric red fluorescent protein (mRFP)-labelled PWL2, which indicates that AVR-Pia accumulates in biotrophic interfacial complexes before being delivered to the plant cytosol. Together, these results suggest that AVR-Pia is a cytoplasmic effector that is expressed at the onset of appressorial differentiation and is translocated to the biotrophic interfacial complex, and then into the host's cytoplasm.
A genomic DNAlibrary from the enomycin (ENM)producer, Streptomyces mauvecolor, was screened for the ENMstructural gene (enm) by use of a segment of the phenomycin gene (phm) as the probe, and a plasmid, pENl, was constructed. By primer-walking along the insert, a 573 bp DNAsequence that contain an ORFcorresponding to preENMwas determined. The deduced amino acid composition of ENMwas close to that previously reported (Mizuno, S.; K. Nitta &H.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.