To describe the main propagation of the COVID-19 and has to find the control for the rapid spread of this viral disease in real life, in current manuscript a discrete form of the SEIR model is discussed. The main aim of this is to describe the viral disease in simplest way and the basic properties that are related with the nature of curves for susceptible and infected individuals are discussed here. The elementary numerical examples are given by using the real data of India and Algeria.
In this article, we study a coupled system of singular fractional difference equations with fractional sum boundary conditions. A sufficient condition of the existence of positive solutions is established by employing the upper and lower solutions of the system and using Schauder's fixed point theorem. Finally, we provide an example to illustrate our results.
We consider a hybrid fractional sum-difference initial value problem and a hybrid fractional sequential sum-difference initial value problem. The existence results of these two problems are proved by using the hybrid fixed point theorem for three operators in a Banach algebra and the generalized Krasnoselskii's fixed point theorem, respectively.
In this paper, using the notions of qκ2-quantum integral and qκ2-quantum derivative, we present some new identities that enable us to obtain new quantum Simpson’s and quantum Newton’s type inequalities for quantum differentiable convex functions. This paper, in particular, generalizes and expands previous findings in the field of quantum and classical integral inequalities obtained by various authors.
In this article, we introduce a new algorithm-based scheme titled asymptotic homotopy perturbation method (AHPM) for simulation purposes of non-linear and linear differential equations of non-integer and integer orders. AHPM is extended for numerical treatment to the approximate solution of one of the important fractional-order two-dimensional Helmholtz equations and some of its cases . For probation and illustrative purposes, we have compared the AHPM solutions to the solutions from another existing method as well as the exact solutions of the considered problems. Moreover, it is observed that the symmetry or asymmetry of the solution of considered problems is invariant under the homotopy definition. Error estimates for solutions are also provided. The approximate solutions of AHPM are tabulated and plotted, which indicates that AHPM is effective and explicit.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.