Elecetric vehicle batteries require direct current (DC) current for charging; hence the circuit alternating current (AC) is converted to DC by a battery charger. Battery charger mostly consists of a rectifier and DC-DC converter with a controller built in to serve as a protective circuit. A harmonic source load is a type of electric car charger. During the AC-DC change over method, harmonic current is introduced into the power system, affecting power quality. In this study, a charging station consisting of buck boost and a charging station consisting a KY Boost converter were simulated. To maintain output voltage of DC-DC converters constant controller is used, the controller is either PI or fuzzy logic controller. So, four models are developed and simulated which are buck-boost converter controlled by proportional-integral (PI)-controller, KY-boost converter controlled by proportional integral-controller, buck boost converter controller fuzzy logic controller and KY boost-converter controlled by fuzzy logic controller. The total harmonic distortion (THD) of the four models is compared.
This paper proposes the switched impedance source converter (SZSC) or switched quasi impedance source DC-DC converter (S-qZSC) based photovoltaic (PV) grid-connected systems. To increase the voltage from low level to high level, all PV grid-connected systems need step-up DC-DC converters. This step-up factor can be increased by connecting the terminals of a traditional quasi impedance source DC-DC converter with an additional diode and a switch. In this proposed converter, the capacitor not only serves as a filter. It is, however, bound in series to the charging loops of the inductors. On the one hand, saturated inductors can trigger instability, which can be avoided. When used for dc-ac conversion, however, the modulation index of the backend H-bridge can be set to a wider range. As compared to existing Z-source-based systems, a shorter duty period results in a higher boost factor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.