In this article, several interesting properties of the incomplete I-functions associated with the Marichev-Saigo-Maeda (MSM) fractional operators are studied and investigated. It is presented that the order of the incomplete I-functions increases about the utilization of the above-mentioned operators toward the power multiple of the incomplete I-functions. Further, the Caputo-type MSM fractional order differentiation for the incomplete I-functions is studied and investigated. Saigo, Riemann-Liouville, and Erdélyi-Kober fractional operators are also discussed as specific cases.
In this article, we have derived some integral transforms of the polynomial weighted incomplete H-functions and incomplete ̄H-functions. The obtained image formulas are of general nature and may, as special cases, give rise to integral transforms involved with the H-functions and ̄H-functions.
In this paper, we determine some expansion formulae of the incomplete I-functions in affiliation with the Leibniz rule for the Riemann-Liouville type derivatives. Further, expansion formulae of the incomplete $\overline{I}$-function, incomplete $\overline{H}$-function, and incomplete H-function are conferred as extraordinary instances of our primary outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.