Autonomy is becoming increasingly important for the robotic exploration of unpredictable environments. One such example is the approach, proximity operation, and surface exploration of small bodies. In this article, we present an overview of an estimation framework to approach and land on small bodies as a key functional capability for an autonomous small-body explorer. We use a multi-phase perception/estimation pipeline with interconnected and overlapping measurements and algorithms to characterize and reach the body, from millions of kilometers down to its surface. We consider a notional spacecraft design that operates across all phases from approach to landing and to maneuvering on the surface of the microgravity body. This SmallSat design makes accommodations to simplify autonomous surface operations. The estimation pipeline combines state-of-the-art techniques with new approaches to estimating the target’s unknown properties across all phases. Centroid and light-curve algorithms estimate the body–spacecraft relative trajectory and rotation, respectively, using a priori knowledge of the initial relative orbit. A new shape-from-silhouette algorithm estimates the pole (i.e., rotation axis) and the initial visual hull that seeds subsequent feature tracking as the body gets more resolved in the narrow field-of-view imager. Feature tracking refines the pole orientation and shape of the body for estimating initial gravity to enable safe close approach. A coarse-shape reconstruction algorithm is used to identify initial landable regions whose hazardous nature would subsequently be assessed by dense 3D reconstruction. Slope stability, thermal, occlusion, and terra-mechanical hazards would be assessed on densely reconstructed regions and continually refined prior to landing. We simulated a mission scenario for approaching a hypothetical small body whose motion and shape were unknown a priori, starting from thousands of kilometers down to 20 km. Results indicate the feasibility of recovering the relative body motion and shape solely relying on onboard measurements and estimates with their associated uncertainties and without human input. Current work continues to mature and characterize the algorithms for the last phases of the estimation framework to land on the surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.