Design and successful synthesis of phenolic-OH and amine-functionalized porous organic polymers as adsorbent for postcombustion CO uptake from flue gas mixtures along with high CO/N selectivity is a very demanding research area in the context of developing a suitable adsorbent to mitigate greenhouse gases. Herein, we report three triazine-based porous organic polymers TrzPOP-1, -2, and -3 through the polycondensation of two triazine rings containing tetraamine and three dialdehydes. These porous organic polymers possess high Brunauer-Emmett-Teller (BET) surface areas of 995, 868, and 772 m g, respectively. Out of the three materials, TrzPOP-2 and TrzPOP-3 contain additional phenolic-OH groups along with triazine moiety and secondary amine linkages. At 273 K, TrzPOP-1, -2, and -3 displayed CO uptake capacities of 6.19, 7.51, and 8.54 mmol g, respectively, up to 1 bar pressure, which are considerably high among all porous polymers reported till date. Despite the lower BET surface area, TrzPOP-2 and TrzPOP-3 containing phenolic-OH groups showed higher CO uptakes. To understand the CO adsorption mechanism, we have further performed the quantum chemical studies to analyze noncovalent interactions between CO molecules and different polar functionalities present in these porous polymers. TrzPOP-1, -2, and -3 have the capability of selective CO uptake over that of N at 273 K with the selectivity of 61:1, 117:1, and 142:1 by using the initial slope comparing method, along with 108.4, 140.6, and 167.4 by using ideal adsorbed solution theory (IAST) method, respectively. On the other hand, at 298 K, the calculated CO/N selectivities in the initial slope comparing method for TrzPOP-1, -2, and -3 are 27:1, 72:1, and 96:1, whereas those using IAST method are 42.1, 75.7, and 94.5, respectively. Cost effective and scalable synthesis of these porous polymeric materials reported herein for selective CO capture has a very promising future for environmental clean-up.
Hg/Hg(II) have been recognized as being highly poisonous to humans as they cause severe health and environmental problems. Designing a suitable adsorbent decorated with an abundance of accessible chelating sites at the solid surface together with high affinity for heavy metals is a big challenge to overcoming mercury contamination. Here we report a new thioether-functionalized covalent triazine nanosphere, SCTN-1, which has been employed as a highly efficient adsorbent for the removal of toxic mercury from contaminated water with an excellent adsorption performance of 1253 and 813 mg g −1 for Hg 2+ and Hg(0) respectively, which largely outperforms several recently reported thiol and thioether-functionalized adsorbents. Our kinetic studies suggest that SCTN-1 showed the fastest adsorption rate for the removal of mercury from aqueous solutions among all adsorbents known until date. Based on its adsorption performance and high recycling efficiency, this thio-functionalized nanoporous polymeric material has huge potential to be explored in environmental remediation.
The infrared (IR) probe often suffers from an unexpected complex absorption profile due to the Fermi resonance and short vibrational lifetime, which restricts the application of time-resolved IR spectroscopy to investigate the site-specific structural dynamics of the protein. Researchers have found that isotope substitution to the IR probe not only removes the Fermi resonance but also extends the dynamic observation window with a prolonged vibrational lifetime. This method has been successfully applied to modify the vibrational properties of many IR probes for time-resolved spectroscopy and imaging. In this study, the effect of isotope substitution (15N) on the vibrational properties of the azide stretching band in 4-azido-L-phenylalanine has been investigated using ultrafast pump-probe and 2D-IR spectroscopy. In contrast to the earlier reports, it has been observed that the Fermi resonance remains unchanged even after isotope substitution, and there is very little change in the vibrational relaxation dynamics as well. Anharmonic frequency analysis reveals that the α-N atom of N3 is being shared between the two transitions participating in the Fermi resonance and gets affected similarly due to isotope labeling. Hence, this study unveils the specific circumstance at which the isotope labeling strategy may not be successful in eliminating the Fermi resonance band and explains the molecular origin behind it. This study also suggests definitive approaches on how to overcome the limitations related to the Fermi resonance to extend the development and application of this IR probe for biological research.
Carbonyl sulfide (OCS) is the most abundant and stable sulfur-containing triatomic gas present in the atmosphere that plays an important role in aerosol formation. Structure, energetics, and photoelectron spectral properties of the microhydrated OCS in its neutral and anionic forms have been studied by using the BP86, B3LYP, and MP2 methods. OCS is linear in the neutral state but bent in the anionic state. Water binds with the OCS through a single hydrogen bond (O-H···O) in the OCS-(H2O)n [n = 1-6], whereas binding of OCS(-) with water takes place through single as well as double hydrogen bonds (O-H···S and O-H···O). Energy decomposition analysis shows that electrostatic and exchange energies are the main contributors to the stabilization energy of the microhydrated OCS and OCS(-) clusters. Detachment as well as solvation energies are calculated with different levels of theory and compared with the existing experimental values. Finally, an analytical expression has been used to obtain the bulk value of the detachment and solvation energies from the existing information on the finite size clusters. The present study reveals that hydration increases the detachment energy of the OCS(-) by 3.2 eV. In the absence of experimental bulk values of the detachment and solvation energies for this system, the values obtained by the solvent-number-dependent theoretical expression will definitely reduce this gap and may be used for the modeling of the OCS in the atmosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.