An experiment was conducted at Malakabad (Gadera) Dargai Malak and KPK to study the effect of different levels of nitrogen and phosphorus on the yield of maize varieties in randomize complete block design with split plot arrangement.
Chemosensory proteins (CSPs) play imperative functions in chemical and biochemical signaling of insects, as they distinguish and transfer ecological chemical indications to a sensory system in order to initiate behavioral responses. The brown planthopper (BPH), Nilaparvata lugens Stål (Hemiptera: Delphacidae), has emerged as the most destructive pest, causing serious damage to rice in extensive areas throughout Asia. Biotic characteristics like monophagy, dual wing forms, and annual long-distance migration imply a critical role of chemoreception in N. lugens. In this study, we cloned the full-length CSP8 gene from N. lugens. Protein sequence analysis indicated that NlugCSP8 shared high sequence resemblance with the CSPs of other insect family members and had the typical four-cysteine signature. Analysis of gene expression indicated that NlugCSP8 mRNA was specifically expressed in the wings of mated 3-day brachypterous females with a 175-fold difference compare to unmated 3-day brachypterous females. The NlugCSP8 mRNA was also highly expressed in the abdomen of unmated 5-day brachypterous males and correlated to the age, gender, adult wing form, and mating status. A competitive ligand-binding assay demonstrated that ligands with long chain carbon atoms, nerolidol, hexanal, and trans-2-hexenal were able to bind to NlugCSP8 in declining order of affinity. By using bioinformatics techniques, three-dimensional protein structure modeling and molecular docking, the binding sites of NlugCSP8 to the volatiles which had high binding affinity were predicted. In addition, behavioral experiments using the compounds displaying the high binding affinity for the NlugCSP8, revealed four compounds able to elicit significant behavioral responses from N. lugens. The in vivo functions of NlugCSP8 were further confirmed through the testing of RNAi and post-RNAi behavioral experiments. The results revealed that reduction in NlugCSP8 transcript abundance caused a decrease in behavioral response to representative attractants. An enhanced understanding of the NlugCSP8 is expected to contribute in the improvement of more effective and eco-friendly control strategies of BPH.
Zinc (Zn) fertilization could be a viable approach for minimizing cadmium (Cd) accumulation in the food chain. The present study was carried out to investigate the role of various Zn fertilization treatments (control, foliar application at tasseling stage, foliar application at milky stage, rubber ash application, soil application of ZnSO4) and cultivars (Pop 2004B, Pop 2006, Azam, Sarhad (W), Pahari) on grain yield, grain Zn, and grain Cd concentrations in maize. All Zn fertilization treatments resulted in a significantly higher grain yield, higher grain Zn concentration, and reduced grain Cd concentration. The application of rubber ash remained the best among all Zn fertilization treatments as it resulted in a higher grain yield of 62% and a reduced grain Cd concentration by 57% compared to control. Contradictions were apparent between cultivars, and the cultivars which recorded a higher grain yield had a lower Zn concentration in their grains and vice versa. Regarding Cd accumulation, all cultivars except Azam, retained less Cd with increased grain Zn concentration. Future studies should focus on breeding/selection of high yielding and high quality cultivars. Furthermore, the feasibility of rubber ash maybe tested under different climatic and edaphic conditions against other heavy metals and other crops as well.
Spodoptera litura (Fabricius) (Lepidoptera: Noctuidae) is a major pest of several economically important crops with worldwide distribution. Use of insecticides is the principal strategy for its management, which has subsequently led to insecticide resistance and control failures. Functional response of Harmonia axyridis (Pallas) (Coleoptera: Coccinellidae) at larval and adult stages was evaluated in this study, using S. litura eggs as the prey at various temperatures varying between 15 and 35 °C. Based on logistic model findings, linear parameters of various predatory stages of H. axyridis at various temperatures were significantly negative, which indicate a type II functional response. The theoretical maximum number (T/Th) of eggs consumed increased with increasing temperature for all predatory stages. According to the random predator equation, the coefficients of attack rate increased and that of handling time decreased as the temperature increased. The 4th instar and adult stages were superior candidates for biocontrol of the target prey, typically at higher temperatures. The maximum attack rate (0.546 ± 0.058 h) and lowest handling time (0.189 ± 0.004 h−1) were exhibited by the females at 30 and 35 °C, respectively, whereas these parameters were inferior for early instars. These findings clearly depict that the 4th instar and adult predators are efficient egg consumers and can serve as potential suppressors of S. litura field populations. The limitations of the predictions formulated by functional response trials are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.