The dynamics of a charged particle moving around a slowly rotating Kerr black hole in the presence of an external magnetic field is investigated. We are interested in exploring the conditions under which the charged particle can escape from the gravitational field of the black hole after colliding with another particle. The escape velocity of the charged particle in the innermost stable circular orbit is calculated. The effective potential and escape velocity of the charged particle with angular momentum in the presence of the magnetic field is analyzed. This work serves as an extension of a preceding paper dealing with the Schwarzschild black hole (Zahrani et al., Phys Rev D 87:084043, 2013).
We have investigated the dynamics of a neutral and a charged particle around a static and spherically symmetric black hole in the presence of quintessence matter and external magnetic field. We explore the conditions under which the particle moving around the black hole could escape to infinity after colliding with another particle. The innermost stable circular orbit (ISCO) for the particles are studied in detail. Mainly the dependence of ISCO on dark energy and on the presence of external magnetic field in the vicinity of black hole is discussed. By using the Lyapunov exponent, we compare the stabilities of the orbits of the particles in the presence and absence of dark energy and magnetic field. The expressions for the center of mass energies of the colliding particles near the horizon of the black hole are derived. The effective force on the particle due to dark energy and magnetic field in the vicinity of black hole is also discussed.
Clusters of galaxies can potentially produce cosmic rays (CRs) up to very-high energies via large-scale shocks and turbulent acceleration. Due to their unique magnetic-field configuration, CRs with energy ≤1017 eV can be trapped within these structures over cosmological time scales, and generate secondary particles, including neutrinos and gamma rays, through interactions with the background gas and photons. In this work we compute the contribution from clusters of galaxies to the diffuse neutrino background. We employ three-dimensional cosmological magnetohydrodynamical simulations of structure formation to model the turbulent intergalactic medium. We use the distribution of clusters within this cosmological volume to extract the properties of this population, including mass, magnetic field, temperature, and density. We propagate CRs in this environment using multi-dimensional Monte Carlo simulations across different redshifts (from z ∼ 5 to z = 0), considering all relevant photohadronic, photonuclear, and hadronuclear interaction processes. We find that, for CRs injected with a spectral index α = 1.5 − 2.7 and cutoff energy Emax = 1016 − 5 × 1017 eV, clusters contribute to a sizeable fraction to the diffuse flux observed by the IceCube Neutrino Observatory, but most of the contribution comes from clusters with M ≳ 1014 M⊙ and redshift z ≲ 0.3. If we include the cosmological evolution of the CR sources, this flux can be even higher.
We investigate the gravitational lensing scenario due to Schwarzschild-like black hole surrounded by quintessence (Kiselev black hole). We work for the special case of Kiselev black hole where we take the state parameter w q = − 2 3 . For the detailed derivation and analysis of the bending angle involved in the deflection of light, we discuss three special cases of Kiselev black hole: nonextreme, extreme and naked singularity. We also calculate the approximate bending angle and compare it with the exact bending angle. We found the relation of bending angles in the decreasing order as: naked singularity, extreme Kiselev black hole, nonextreme Kiselev black hole and Schwarzschild black hole. In the weak field approximation, we compute the position and total magnification of relativistic images as well.
Abstract:We investigate the dynamics of a neutral and a charged particle around a black hole in modified gravity immersed in magnetic field. Our focus is on the scalar-tensor-vector theory as modified gravity. We are interested to explore the conditions on the energy of the particle under which it can escape to infinity after collision with another neutral particle in the vicinity of the black hole. We calculate escape velocity of particle orbiting in the innermost stable circular orbit (ISCO) after the collision. We study the effects of modified gravity on the dynamics of particles. Further we discuss how the presence of magnetic field in the vicinity of black hole, effects the motion of the orbiting particle. We show that the stability of ISCO increases due to presence of magnetic field. It is observed that a particle can go arbitrary close to the black hole due to presence of magnetic field. Furthermore ISCO for black hole is more stable as compared with Schwarzschild black hole. We also discuss the Lyapunov exponent and the effective force acting on the particle in the presence of magnetic field. * Electronic address: s
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.