We have studied the repercussion of the molecular adsorption mechanism on the electronic properties of the interface between model nonmagnetic or magnetic metallic surfaces and metallo-organic phthalocyanines molecules (Pcs). Our intertwined x-ray absorption spectroscopy experiments and computational studies reveal that manganese Pc (MnPc) is physisorbed onto a Cu(001) surface and retains the electronic properties of a free molecule. On the other hand, MnPc is chemisorbed onto Co(001), leading to a dominant direct exchange interaction between the Mn molecular site and the Co substrate. By promoting an interfacial spin-polarized conduction state on the molecule, these interactions reveal an important lever to tailor the spintronic properties of hybrid organic-metallic interfaces.
Organic semiconductors constitute promising candidates toward large-scale electronic circuits that are entirely spintronics-driven. Toward this goal, tunneling magnetoresistance values above 300% at low temperature suggested the presence of highly spin-polarized device interfaces. However, such spinterfaces have not been observed directly, let alone at room temperature. Thanks to experiments and theory on the model spinterface between phthalocyanine molecules and a Co single crystal surface, we clearly evidence a highly efficient spinterface. Spin-polarised direct and inverse photoemission experiments reveal a high degree of spin polarisation at room temperature at this interface. We measured a magnetic moment on the molecule's nitrogen π orbitals, which substantiates an ab-initio theoretical description of highly spin-polarised charge conduction across the interface due to differing spinterface formation mechanisms in each spin channel. We propose, through this example, a recipe to engineer simple organic-inorganic interfaces with remarkable spintronic properties that can endure well above room temperature.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.