The present article investigates the effects of diffusion-thermo, thermal radiation, and magnetic field of strength B 0 on the time dependent MHD flow of Jeffrey nanofluid past over a porous medium in a rotating frame. The plate is assumed vertically upward along the x-axis under the effect of cosine oscillation. Silver nanoparticles are uniformly dispersed into engine oil, which is taken as a base fluid. The equations which govern the flow are transformed into a time fractional model using Atangana-Baleanu time fractional derivative. To obtain exact expressions for velocity, temperature, and concentration profiles, the Laplace transform technique, along with physical initial and boundary conditions, is used. The behaviors of the fluid flow under the impact of corresponding dimensionless parameters are shown graphically. The variations in Nusselt number and Sherwood number of relative parameters are found numerically and shown in tabular form. It is worth noting that the rate of heat transfer of engine oil is enhanced by 15.04% when the values of volume fraction of silver nanoparticles vary from 0.00 to 0.04, as a result the lubricant properties are improved.
In this paper, the newly developed fractal-fractional differential and integral operators are used to analyze the dynamics of chaotic system based on image encryption. The problem is modeled in terms of classical order nonlinear, coupled ordinary differential equations that are then generalized through fractal-fractional differential operator of Mittag-Leffler kernel. In addition to that, some theoretical analyses, such as model equilibria, existence, and uniqueness of the solutions, have been proved. Furthermore, the highly non-linear problem is solved by adopting a numerical scheme through MATLAB software. The graphical solution is portrayed through 2D and 3D portraits. Some interesting results are concluded considering the variation of fractional-order parameter and fractal dimension parameter.
In the current research community, certain new fractional derivative ideas have been successfully applied to examine several sorts of mathematical models. The fractal fractional derivative is a novel concept that has been proposed in recent years. In the presence of heat generation, however, it is not employed for the free convection Couttee flow of the Casson fluid model. The core interest of the present analysis is to examine the Casson fluid under the influence of heat generation and magnetic field. The flow of the Casson fluid has been considered in between two vertical parallel plates. The distance between the plates is taken as [Formula: see text]. The linear coupled governing equation has been developed in terms of classical PDEs and then generalized by employing the operator of the fractal-fractional derivative with an exponential kernel. The numerical solution of the proposed problem has been found employing the finite-difference technique presented by Crank–Nicolson. The Crank–Nicolson finite difference scheme has the advantage of being unconditionally stable and can be applied directly to the PDEs without any transformation to ODEs. This technique in sense of exponential memory has been revealed to be unreported in the literature for such a proposed problem. For graphical analysis, the graphs of velocity profile and thermal field have been plotted in response to several rooted parameters. For comparative analysis, the graphs for the parameter of fractal-fractional, fractional, and classical order have also been plotted. From the analysis, it has been found that the fractal-fractional order model has a large memory effect than the fractional-order and classical model due to the fractal order parameter.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.