Thermoluminescence characteristics of natural rhyolite have been studied. Dose response at a wide dose range of 0.5–2000 Gy has been determined. Minimum detectable dose and thermal fading rate are evaluated. Glow curve deconvolution is conducted after determining the best read-out conditions. The repeated initial rise (RIR) method is used to detect the overlapping peaks, and a glow curve deconvolution procedure is used to extract the thermoluminescence parameters of rhyolite. According to the findings, rhyolite glow curves show five interfering peaks corresponding to five electron trap levels at 142, 176, 221, 298, and 355 °C, respectively, at a heating rate of 3 °C/s. The obtained kinetic order for the deconvoluted peaks showed mixed-order kinetic. The reported results might be useful to introduce rhyolite as a natural sustainable material for radiation dosimetry applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.