This study investigated the potential of oleaginous yeast Rhodotorula glutinis utilizing pulp and paper wastewater effluents as cultivation media for the sustainable production of microbial lipids as biodiesel feedstock. R. glutinis is oleaginous yeast, which has the ability to produce significant quantities of intercellular lipids in the form of triacylglycerols. Yeast lipids are a promising potential feedstock for biodiesel production due to similar fatty acid composition to plant oils. The effect of various carbon sources on biomass production, lipid accumulation, substrate utilization, and fatty acid composition using R. glutinis in the pulp and paper wastewater media was studied. The pulp and paper wastewater was supplemented with glucose, xylose, and glycerol as carbon sources under nitrogen-limited conditions. The maximum lipid productions of 1.3-2.9 g•L −1 , which corresponded to the intracellular lipid contents of 8%-15% cell dry weight (CDW), were obtained under various carbon substrates. A kinetic study of the batch fermentation was performed in a 3 L aerobic batch fermenter to describe the cell growth, lipid accumulation, and substrate utilization process, and the kinetic parameter was estimated. The fatty acid profile of oleaginous yeast was rich in palmitic, oleic, and linoleic acids and comparable to vegetable oils. Thus, the results of this study indicated that pulp and paper wastewater could be used to produce lipids as biodiesel feedstock.
Summary
The synergistic effect of microwave and ultrasound irradiations was evaluated for biodiesel production from microalgae biomass (Nannochloropsis sp.) as raw material. A response surface methodology technique based on central composite design was used to understand the process parametric interdependence and optimize the process reaction variables. Reaction kinetics of algal fatty acid methyl ester (FAME) production was also studied. The optimum reaction conditions were determined as wet algal biomass to methanol ratio of 20 g to 30 mL, 1 wt% catalyst concentration, and 7‐minute reaction time at 140 W of microwave power and 140 W of ultrasound power. The estimated activation energy was 17,298 J/mol−1 K−1 for a first‐order reaction kinetics. This study revealed that microwave energy dissipation at a low rate of 140 W combined with 140 W of ultrasound intensity is adequate to produce FAMEs at a maximum yield of 48.2%. Results from this optimization study suggest that a more detailed and mechanistic energy optimization study is critical to increase the FAME yield and maximize energy benefits.
Biodiesel is an alternative fuel made from costly vegetable oil feedstocks. Some microorganisms can accumulate lipids when nutrients are limited and carbon is in excess. Rhodococcus rhodochrous is a gram-positive bacterium most often used in bioremediation or acrylamide production. The purpose of this study was to investigate and characterize the lipid accumulation capabilities of R. rhodochrous. Shake flasks and a large-scale fermentation were used to cultivate R. rhodochrous in varying concentrations of glucose. R. rhodochrous achieved almost 50 % of dry cell mass as lipid when grown in 20 g/L of glucose. Wax esters and triglycerides were identified in R. rhodochrous lipid extract. The transesterified extractables of R. rhodochrous consisted of mostly palmitic (35 %) and oleic (42 %) acid methyl esters. This study shows R. rhodochrous to be an oleaginous bacterium with potential for application in alternative fuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.