Two species, the fathead minnow Pimephales promelas and the amphipod Hyalella azteca, were tested to examine acute toxicity to two insecticides, cyfluthrin and imidacloprid individually and as a mixture. Cyfluthrin was acutely toxic to P. promelas and H. azteca with EC50 values and 95 % confidence intervals of 0.31 µg L(-1) (0.26-0.35 µg L(-1)) and 0.0015 µg L(-1) (0.0011-0.0018 µg L(-1)), respectively. Imidacloprid was not acutely toxic to P. promelas at water concentrations ranging from 1 to 5000 µg L(-1), whereas it was toxic to H. azteca with a EC50 value of 33.5 µg L(-1) (23.3-47.4 µg L(-1)). For the P. promelas mixture test, imidacloprid was added at a single concentration to a geometric series of cyfluthrin concentrations bracketing the EC50 value. A synergistic ratio (SR) of 1.9 was found for P. promelas, which was calculated using the cyfluthrin-only exposure and mixture-exposure data. Because cyfluthrin and imidacloprid were toxic to H. azteca, the mixture test was designed based on an equipotent toxic unit method. Results from the mixture test indicated a model deviation ratio (MDR) of 1.7 or 2.7 depending on the model. Mixture test results from the simultaneous exposure to cyfluthrin and imidacloprid with both species indicated a greater than expected toxic response because the SR or MDR values were >1. Because these two insecticides are commonly used together in the same product formulations, nontarget species could be more affected due to their greater-than-additive toxicity observed in the current study.
A site-specific ecological risk assessment (ERA) was conducted to examine the simultaneous use of genetically modified corn (Bt corn) with a neonicotinoid seed coating, clothianidin, and use of a granular insecticide, tefluthrin, to protect crops from pest damage. A field study was conducted on site, and exposure data from the literature were summarized to determine the matrices and exposure concentrations that nontarget species could typically experience within an agricultural ecosystem. To determine ecological effects on nontarget species, acute toxicity bioassays were conducted on earthworms (Eisenia fetida), amphipods (Hyalella azteca), and Elmid riffle beetle larvae (Ancyronyx spp.) in which the test species were exposed to single insecticides as well as the mixture of the 3 insecticides. In the risk characterization section of the ERA, stressor-response profiles for each species tested were compared with field distributions of the insecticides, and a margin of safety at the 10th percentile (MOS10) was calculated to estimate risk. No acute toxicity was observed in any of the 3 nontarget species after exposure to senescent Bt corn leaf tissue. Large MOS10 values were calculated for clothianidin to the nontarget species. When bioassays were compared with tefluthrin field distributions, very low MOS10 values were calculated for earthworms (0.06) and H. azteca (0.08) because the environmental concentrations often exceeded the stressor-response profile. No increased toxicity was observed when nontarget species were exposed to a mixture of the 3 insecticides. In summary, the genetically modified corn insecticidal proteins and clothianidin were not found at environmental concentrations exceeding benchmark values for ecological effects, but tefluthrin was consistently detected in the environment at levels that could be causing toxicity to nontarget species, especially if this pyrethroid is able to travel off site.
A method was developed for the extraction and analysis of 2 organophosphate, 8 pyrethroid, and 5 neonicotinoid insecticides from the same water sample. A salted liquid-liquid extraction (LLE) was optimized with a solid-phase extraction (SPE) step that separated the organophosphates (OPs) and pyrethroids from the neonicotinoids. Factors that were optimized included volume of solvent and amount of salt used in the LLE, homogenization time for the LLE, and type and volume of eluting solvent used for the SPE. The OPs and pyrethroids were quantified using gas chromatography-mass spectrometry, and the neonicotinoids were quantified using liquid chromatography-diode array detector. Results showed that the optimized method was accurate, precise, reproducible, and robust; recoveries in river water spiked with 100 ng L(-1) of each of the insecticides were all between 86 and 114 % with RSDs between 2 and 8 %. The method was also sensitive with method detection limits ranging from 0.1 to 27.2 ng L(-1) depending on compounds and matrices. The optimized method was thus appropriate for the simultaneous extraction of 15 widely applied insecticides from three different classes and was shown to provide valuable information on their environmental fate from field-collected aqueous samples.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.