Clinical studies have already established 1,5-AG in blood as a reliable marker of short-term glycemic control. Our study suggests that 1,5-AG in saliva can be used in national screening programs for undiagnosed diabetes, which are of particular interest for Middle Eastern countries with young populations and exceptionally high diabetes rates.
Aims/hypothesisMetabolomics has opened new avenues for studying metabolic alterations in type 2 diabetes. While many urine and blood metabolites have been associated individually with diabetes, a complete systems view analysis of metabolic dysregulations across multiple biofluids and over varying timescales of glycaemic control is still lacking.MethodsHere we report a broad metabolomics study in a clinical setting, covering 2,178 metabolite measures in saliva, blood plasma and urine from 188 individuals with diabetes and 181 controls of Arab and Asian descent. Using multivariate linear regression we identified metabolites associated with diabetes and markers of acute, short-term and long-term glycaemic control.ResultsNinety-four metabolite associations with diabetes were identified at a Bonferroni level of significance (p < 2.3 × 10−5), 16 of which have never been reported. Sixty-five of these diabetes-associated metabolites were associated with at least one marker of glycaemic control in the diabetes group. Using Gaussian graphical modelling, we constructed a metabolic network that links diabetes-associated metabolites from three biofluids across three different timescales of glycaemic control.Conclusions/interpretationOur study reveals a complex network of biochemical dysregulation involving metabolites from different pathways of diabetes pathology, and provides a reference framework for future diabetes studies with metabolic endpoints.Electronic supplementary materialThe online version of this article (doi:10.1007/s00125-015-3636-2) contains peer-reviewed but unedited supplementary material, which is available to authorised users.
Metabolomics-genome-wide association studies (mGWAS) have uncovered many metabolic quantitative trait loci (mQTLs) influencing human metabolic individuality, though predominantly in European cohorts. By combining whole-exome sequencing with a high-resolution metabolomics profiling for a highly consanguineous Middle Eastern population, we discover 21 common variant and 12 functional rare variant mQTLs, of which 45% are novel altogether. We fine-map 10 common variant mQTLs to new metabolite ratio associations, and 11 common variant mQTLs to putative protein-altering variants. This is the first work to report common and rare variant mQTLs linked to diseases and/or pharmacological targets in a consanguineous Arab cohort, with wide implications for precision medicine in the Middle East.
DNA methylation and blood circulating proteins have been associated with many complex disorders, but the underlying disease-causing mechanisms often remain unclear. Here, we report an epigenome-wide association study of 1123 proteins from 944 participants of the KORA population study and replication in a multi-ethnic cohort of 344 individuals. We identify 98 CpG-protein associations (pQTMs) at a stringent Bonferroni level of significance. Overlapping associations with transcriptomics, metabolomics, and clinical endpoints suggest implication of processes related to chronic low-grade inflammation, including a network involving methylation of NLRC5, a regulator of the inflammasome, and associated pQTMs implicating key proteins of the immune system, such as CD48, CD163, CXCL10, CXCL11, LAG3, FCGR3B, and B2M. Our study links DNA methylation to disease endpoints via intermediate proteomics phenotypes and identifies correlative networks that may eventually be targeted in a personalized approach of chronic low-grade inflammation.
Epigenetic regulation of cellular function provides a mechanism for rapid organismal adaptation to changes in health, lifestyle and environment. Associations of cytosine-guanine di-nucleotide (CpG) methylation with clinical endpoints that overlap with metabolic phenotypes suggest a regulatory role for these CpG sites in the body’s response to disease or environmental stress. We previously identified 20 CpG sites in an epigenome-wide association study (EWAS) with metabolomics that were also associated in recent EWASs with diabetes-, obesity-, and smoking-related endpoints. To elucidate the molecular pathways that connect these potentially regulatory CpG sites to the associated disease or lifestyle factors, we conducted a multi-omics association study including 2474 mass-spectrometry-based metabolites in plasma, urine and saliva, 225 NMR-based lipid and metabolite measures in blood, 1124 blood-circulating proteins using aptamer technology, 113 plasma protein N-glycans and 60 IgG-glyans, using 359 samples from the multi-ethnic Qatar Metabolomics Study on Diabetes (QMDiab). We report 138 multi-omics associations at these CpG sites, including diabetes biomarkers at the diabetes-associated TXNIP locus, and smoking-specific metabolites and proteins at multiple smoking-associated loci, including AHRR. Mendelian randomization suggests a causal effect of metabolite levels on methylation of obesity-associated CpG sites, i.e. of glycerophospholipid PC(O-36: 5), glycine and a very low-density lipoprotein (VLDL-A) on the methylation of the obesity-associated CpG loci DHCR24, MYO5C and CPT1A, respectively. Taken together, our study suggests that multi-omics-associated CpG methylation can provide functional read-outs for the underlying regulatory response mechanisms to disease or environmental insults.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.