Abstract. Cement replacement by supplementary cementitious materials has been gaining momentum as a sustainable mechanism to reduce greenhouse gas emissions while also recycling industrial by-products. This paper presents the development and microstructure characterization of fly ash-based lightweight geopolymer concrete incorporating ground granulated blast furnace slag (GGBS). Concrete samples were prepared with 0%, 25% and 50% GGBS replacement and cured at 30°C, 60°C, and ambient temperature. While dune sand and lightweight expanded clay were used as aggregates, a mixture of sodium silicate and sodium hydroxide served as the alkaline activation solution. Microstructure evaluation was carried out at 7 and 28 days employing scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). Residual fly ash and GGBS were identified in the concrete and bonded to geopolymeric reaction products. The microstructure highlighted the formation and coexistence of aluminosilicate hydrate and aluminum-rich calcium silicate hydrate with traces of sodium. Subsequent polymerization was also verified by an increase in FTIR and DSC peaks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.