Pregnant mice were irradiated with 0.5 Gy fission neutrons on the eighteenth day of their gestation. The average litter size at birth was unchanged but mortality increased 5-6 fold in the first 3 days. The irradiated mice were the same weight as control mice at birth but showed a progressively increasing weight deficiency up to at least 36 days as compared to controls. Brain weight was 37, 45 and 25 per cent less in 2-, 3- and 52-week old irradiated animals, respectively, and the ratio of brain weight to body weight was 25, 27 and 13 per cent less. The concentrations of DNA, RNA and protein (mg/g wet tissue) were the same in irradiated and control mice in both brain and liver at all three ages. Total DNA, RNA and protein contents of whole brain after irradiation were 56-75 per cent of the control levels. No definite decrease was observed in liver. Histological study at 6 hours after irradiation showed nuclear pyknosis in the central nervous system from definite to very severe according to the part examined. It is concluded that damage to the central nervous system of the 18-day mouse foetus after neutron irradiation is mainly due to killing and/or inhibition of the differentiation of neuroblasts.
Pregnant female C57B1/6 mice were irradiated with a single whole-body dose of 0.5 Gy neutrons. The F1 hybrid embryos were exposed to the neutrons in utero on Day 17 +/- 2 of gestation. 178/439 (40.6%) of the irradiated fetuses and 26/217 (12%) of the control mice died within 2 weeks after birth. In both irradiated and control mice, most deaths (95 and 77%, respectively) occurred within 3 days of birth: most animals in both groups died on Day 2. There was no significant difference in the number of living young born per litter (7.2) between the neutron-irradiated mothers and their unirradiated controls. The irradiated mice weighed significantly less than their controls. On the first day after birth, body weights of mice irradiated in utero averaged only 85% of control weights. Body weights did not reach control levels until 6 months after birth. Several organs were weighed at regular intervals in both irradiated and control mice. Spleens and thymus glands showed no significant differences between the two groups. The livers and kidneys of the irradiated mice weighed slightly less than their controls. The brain weight of 21-day-old neutron-irradiated mice was 30-35% less than control brains. The weight loss of the brain was not only a relative loss, but also an absolute one, based on brain weight/body weight ratios. Histological analysis of the central nervous system showed pycnotic nuclei, inhibition of mitosis in neuroblasts, and cell death in the irradiated brains. The weight reduction of the brain was not due to water loss. Our hypothesis is that the early mortality after birth is related to the killing of the radiation-sensitive neuroblasts. When newborn mice (1-7 days old) were irradiated in vivo with the same neutron dose of 0.5 Gy, neither the reduction in brain weight nor the early mortality was observed. The early deaths of the neutron-irradiated mouse embryos does not appear to be caused by either the hematological or the gastrointestinal radiation syndrome.
The atomic bombing of Hiroshima and Nagasaki and the nuclear accident at Chernobyl raised the question of prenatal sensitivity to ionizing radiation-induced cancer. In this study, mice were exposed to single doses of gamma-radiation (0.2-2.0 Gy) at different embryonic stages. The tumor incidence increased with dose from 15% in control mice to 35% in mice irradiated with 2.0 Gy on 18 d of prenatal life. Various oncogenic events were investigated in lymphoid, liver, lung, and uterine tumors. We observed threefold to fivefold increases in myc expression in 25% of the lymphomas, and the expression of Ha-ras and p53 genes decreased in 40% and 60% of the lung tumors by twofold to fivefold. Point mutations were tissue specific: Ha-ras codon 61 mutations were found in about 40% of the liver adenocarcinomas, Ki-ras codon 12 mutations in about 17% of lung tumors, and p53 mutations in about 15% of the lymphomas. Amplification and rearrangement of the p53, myc, and Ha-, Ki- and N-ras genes were not detected. Loss of heterozygosity on chromosome 4 at the multiple tumor suppressor 1 and 2 genes was observed in all types of malignancies. Allelic losses on chromosome 11 at the p53 locus were found in lymphoid, liver, and lung tumors, but they were absent from uterine tumors. Multiple oncogenic changes were often detected. The frequency of carcinogenic alterations was similar in spontaneous and radiation-induced lymphoid, liver, and uterine tumors. In radiation-induced lung adenocarcinomas, however, the incidences of many oncogenic changes were different from those found in their spontaneous counterparts. This suggests that different oncogenic pathways are activated during spontaneous and in utero gamma-radiation-induced murine lung carcinogenesis.
The atomic bombing of Hiroshima and Nagasaki and the nuclear accident at Chernobyl raised the question of prenatal sensitivity to ionizing radiation-induced cancer. In this study, mice were exposed to single doses of gamma-radiation (0.2-2.0 Gy) at different embryonic stages. The tumor incidence increased with dose from 15% in control mice to 35% in mice irradiated with 2.0 Gy on 18 d of prenatal life. Various oncogenic events were investigated in lymphoid, liver, lung, and uterine tumors. We observed threefold to fivefold increases in myc expression in 25% of the lymphomas, and the expression of Ha-ras and p53 genes decreased in 40% and 60% of the lung tumors by twofold to fivefold. Point mutations were tissue specific: Ha-ras codon 61 mutations were found in about 40% of the liver adenocarcinomas, Ki-ras codon 12 mutations in about 17% of lung tumors, and p53 mutations in about 15% of the lymphomas. Amplification and rearrangement of the p53, myc, and Ha-, Ki- and N-ras genes were not detected. Loss of heterozygosity on chromosome 4 at the multiple tumor suppressor 1 and 2 genes was observed in all types of malignancies. Allelic losses on chromosome 11 at the p53 locus were found in lymphoid, liver, and lung tumors, but they were absent from uterine tumors. Multiple oncogenic changes were often detected. The frequency of carcinogenic alterations was similar in spontaneous and radiation-induced lymphoid, liver, and uterine tumors. In radiation-induced lung adenocarcinomas, however, the incidences of many oncogenic changes were different from those found in their spontaneous counterparts. This suggests that different oncogenic pathways are activated during spontaneous and in utero gamma-radiation-induced murine lung carcinogenesis.
Some properties of hemopoietic stem cells (CFU) circulating in the peripheral blood of the normal mouse (PCFU) were studied. Those parameters were chosen that are well-known characteristics of bone marrow stem cell populations. Leukocytes separated from the peripheral blood were the source of PCFU. The radiosensitivity (D0 value), growth curve, seeding efficiency (f number), and the turnover state (number of PCFU in S phase measured by 3H-thymidine killing technique in vitro) of PCFU were compared to the same parameters for bone marrow CFU. Several characteristic changes in these parameters were found for PCFU: (1) Lower radiosensitivity (D0 = 140 R), (2) Higher seeding efficiency (f number 20.9%), (3) Higher sensitivity to 3H-thymidine in vitro (killing effect 32%). The doubling time was the same both for CFU and PCFU (21 hr), but the logarithmic growth of the PCFU population started by approximately 36 hr later than that of the marrow-derived CFU population. All these findings support the idea that PCFU represent a subpopulation of the heterogeneous bone marrow CFU population.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.