Somatostatin was reported to inhibit Kaposi's sarcoma (KS) cell (KS-Imm) xenografts through an antiangiogenic activity. Here, we show that somatostatin blocks growth of established KS-Imm tumors with the same efficacy as adriamycin, a clinically effective cytotoxic drug. Whereas KS-Imm cells do not express somatostatin receptors (SSTRs), endothelial cells express several SSTRs, in particular SSTR3. We investigated the molecular mechanisms and receptor specificity of somatostatin inhibition of angiogenesis. Somatostatin significantly inhibited angiogenesis in vivo in the matrigel sponge assay; this inhibition was mimicked by the SSTR3 agonist L-796778 and reversed by the SSTR3 antagonist BN81658, demonstrating involvement of SSTR3. In vitro experiments showed that somatostatin directly affected different endothelial cell line proliferation through a block of growth-factor-stimulated MAPK and endothelial nitric oxide (NO) synthase (eNOS) activities. BN81658 reversed somatostatin inhibition of cell proliferation, NO production, and MAPK activity, indicating that SSTR3 activation is required for the effects of somatostatin in vitro. Finally in vivo angiogenesis assays demonstrated that eNOS inhibition was a prerequisite for the antiangiogenic effects of somatostatin, because high concentrations of sodium nitroprusside, an NO donor, abolished the somatostatin effects. In conclusion, we demonstrate that somatostatin is a powerful antitumor agent in vivo that inhibits tumor angiogenesis through SSTR3-mediated inhibition of both eNOS and MAPK activities.
Purified enzymes were mixed to form a cell-free system that simulated the conditions for removal of hydrogen peroxide within human erythrocytes. Human glutathione peroxidase disposed of hydrogen peroxide (H2O2) at a rate that was only 17% of the rate at which human catalase simultaneously removed hydrogen peroxide. The relative rates observed were in agreement with the relative rates predicted from the kinetic constants of the two enzymes. These results confirm two earlier studies on intact erythrocytes, which refuted the notion that glutathione peroxidase is the primary enzyme for removal of hydrogen peroxide within erythrocytes. The present findings differ from the results with intact cells, however, in showing that glutathione peroxidase accounts for even less than 50% of the removal of hydrogen peroxide. A means is proposed for calculating the relative contribution of glutathione peroxidase and catalase in other cells and species. The present results raise the possibility that the major function of glutathione peroxidase may be the disposal of organic peroxides rather than the removal of hydrogen peroxide.
Somatostatin receptors (SSTRs) have been detected in many normal and malignant tissues. This wide expression has been used for diagnostic, prognostic and therapeutic purposes. Five SSTR subtypes (SSTR 1-5) have been identified whose activation is responsible for the signal transduction through many different intracellular pathways. In the present study the expression of SSTR mRNA was determined by reverse-transcriptase (RT)-PCR in 42 meningiomas. About 88% of the tumors analyzed (37/42) were positive for at least one of the five SSTR subtypes displaying a variable pattern of expression of the different SSTR subtypes. SSTRI and SSTR2 were the most frequently mRNA detected (69% and 79% of the sample analyzed, respectively). The other subtypes were found in the 43%, 33% and 33% of cases for SSTR3, SSTR4 and SSTR5, respectively. In 22, out of 42 patients (52%) three or more SSTRs were detected. The expression of the different SSTR subtypes did not correlate with the expression of bcl-2 (apoptosis-associated protein) and MIB-1 (a proliferation marker), assessed by immunohistochemistry in a series of 34 tumor samples, while a correlation between the expression of SSTR3 and p53 was observed (p = 0.08). To evaluate a possible role of SSTR in the control of human meningioma cell proliferation, seven primary cell cultures obtained from fresh meningioma surgical tissues, were analyzed for their proliferative behavior by MTT assay and for their response to SST by [3H]-thymidine incorporation. In four out of six tumors (in one case no SSTR were detected) the treatment with SST caused a significant inhibition of DNA synthesis induced by the tumor-promoter phorbol myristate acetate. The evidence of the expression of SSTRs, mainly of SSTR2, in this series of specimens we analyzed altogether with in vitro antiproliferative effects of SST may open interesting perspectives for the diagnosis and the therapy of meningiomas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.