The cancer stem cell (CSC) hypothesis proposes a hierarchical organization of tumors, in which stem-like cells sustain tumors and drive metastasis. The molecular mechanisms underlying the acquisition of CSCs and metastatic traits are not well understood. SOX9 is a transcription factor linked to stem cell maintenance and commonly overexpressed in solid cancers including colorectal cancer. In this study, we show that SOX9 levels are higher in metastatic (SW620) than in primary colorectal cancer cells (SW480) derived from the same patient. This elevated expression correlated with enhanced self-renewal activity. By gain and loss-of-function studies in SW480 and SW620 cells respectively, we reveal that SOX9 levels modulate tumorsphere formation and self-renewal ability in vitro and tumor initiation in vivo. Moreover, SOX9 regulates migration and invasion and triggers the transition between epithelial and mesenchymal states. These activities are partially dependent on SOX9 post-transcriptional modifications. Importantly, treatment with rapamycin inhibits self-renewal and tumor growth in a SOX9-dependent manner. These results identify a functional role for SOX9 in regulating colorectal cancer cell plasticity and metastasis, and provide a strong rationale for a rapamycin-based therapeutic strategy.
The management of patients with pancreatic cancer has advanced over the last few years. We convey a multidisciplinary group of experts in an attempt to stablish practical guidelines for the diagnoses, staging and management of these patients. This paper summarizes the main conclusions of the working group. Patients with suspected pancreatic ductal adenocarcinoma should be rapidly evaluated and referred to high-volume centers. Multidisciplinary supervision is critical for proper diagnoses, staging and to frame a treatment plan. Surgical resection together with chemotherapy offers the highest chance for cure in early stage disease. Patients with advanced disease should be classified in treatment groups to guide systemic treatment. New chemotherapeutic regimens have resulted in improved survival. Symptomatic management is critical in this disease. Enrollment in a clinical trial is, in general, recommended.
Molecular and cellular heterogeneity are phenomena that are revolutionizing
oncology research and becoming critical to the idea of personalized medicine.
Recent comprehensive molecular profiling has identified molecular subtypes of
gastric cancer (GC) and linked them to clinical information. Moreover, GC stem
cells (gCSCs) have been identified and found to be responsible for GC initiation
and progression, Helicobacter pylori oncogenic action and
therapy resistance. Addressing molecular heterogeneity is critical for achieving
an optimal therapeutic approach against GC as well as targeting gCSCs. In this
review, we outline the implications of molecular and cellular heterogeneity in
the treatment of GC and we summarize the clinical impact of the most important
regulators of gCSCs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.