We systematically reviewed the currently available evidence on how the design parameters of surface nanopatterns (e.g. height, diameter, and interspacing) relate to their bactericidal behavior. The systematic search of the literature resulted in 46 studies that satisfied the inclusion criteria of examining the bactericidal behavior of nanopatterns with known design parameters in absence of antibacterial agents. Twelve of the included studies also assessed the cytocompatibility of the nanopatterns. Natural and synthetic nanopatterns with a wide range of design parameters were reported in the included studies to exhibit bactericidal behavior. However, most design parameters were in the following ranges: heights of 100-1000 nm, diameters of 10-300 nm, and interspacings of <500 nm. The most commonly used type of nanopatterns were nanopillars, which could kill bacteria in the following range of design parameters: heights of 100-900 nm, diameters of 20-207 nm, and interspacings of 9-380 nm. The vast majority of the cytocompatibility studies (11 out of 12) showed no adverse effects of bactericidal nanopatterns with the only exception being nanopatterns with extremely high aspect ratios. The paper concludes with a discussion on the evidence available in the literature regarding the killing mechanisms of nanopatterns and the effects of other parameters including surface affinity of bacteria, cell size, and extracellular polymeric substance (EPS) on the killing efficiency. Statement of significance The use of nanopatterns to kill bacteria without the need for antibiotics represents a rapidly growing area of research. However, the optimum design parameters to maximize the bactericidal behavior of such physical features need to be fully identified. The present manuscript provides a systematic review of the bactericidal nanopatterned surfaces. Identifying the effective range of dimensions in terms of height, diameter, and interspacings, as well as covering their impact on mammalian cells, has enabled a comprehensive discussion including the bactericidal mechanisms and the factors controlling the bactericidal efficiency. Overall, this review helps the readers have a better understanding of the state-of-the-art in the design of bactericidal nanopatterns, serving as a design guideline and contributing to the design of future experimental studies.
Due to antibacterial characteristic, amnion has been frequently used in different clinical situations. Developing an in vitro method to augment endogenous antibacterial ingredient of amniotic epithelial and mesenchymal stem cells is desirable for a higher efficacy of this promising biomaterial. In this study, epithelial or mesenchymal side dependent effect of amniotic membrane (AM) on antibacterial activity against some laboratory and clinical isolated strains was investigated by modified disk diffusion method and colony count assay. The effect of exposure to IL-1β in production and release of antibacterial ingredients was investigated by ELISA assay. The results showed that there is no significant difference between epithelial and mesenchymal sides of amnion in inhibition of bacterial growth. Although the results of disk diffusion showed that the AM inhibitory effect depends on bacterial genus and strain, colony count assay showed that the extract of AM inhibits all investigated bacterial strains. The exposure of AM to IL-1β leads to a higher level of antibacterial peptides secretion including elafin, HBD-2, HBD-3 and cathelicidic LL-37. Based on these results, amniotic cells possess antibacterial activity which can be augmented by inflammatory signal inducers; a process which make amnion and its epithelial and mesenchymal stem cells more suitable for tissue engineering and regenerative medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.