Geotechnical engineers are well aware that the particle surface chemistry and the pore fluid composition can significantly influence the mechanical behaviour of clay. Reference is often made to the Derjaguin-Landau-Vervey-Overbeek (DLVO) theory, which enables the electrochemical interactions between charged particles to be estimated. Hitherto, the absence of an effective framework for particle-scale simulation of clay has inhibited a direct link between these electrochemical interactions and clay behaviour (e.g. load:deformation response) or fabric (i.e. the development of a disperse or flocculated fabric). Ebrahimi [1] demonstrated the viability of using molecular dynamics simulations where the clay grains are simulated as ellipsoidal particles whose interactions are described by an analytical expression called the Gay-Berne (GB) potential. While promising when compared to other approaches documented in the literature, Ebrahimi's work considered only a single clay mineralogy and did not explicitly account for the pore fluid composition. This paper considers the use of the Gay-Berne potential in particle-scale modelling of clay from a more general perspective. Calibration of the GB model parameters to predict kaolinite particle interactions reveals a lack of generality in Ebrahimi's approach. The Gay-Berne potential cannot simulate situations in which attractive and repulsive interactions co-exist, which lead to the classical “cardhouse” fabric, as is the case of kaolinite particles interacting via an acidic pore fluid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.