The imidazolium trans-tetrachloro(dimethylsulfoxide)imidazoleruthenate(III) complex [ImH][Ru(III)Cl(4)(DMSO)(Im)], NAMI-A, has shown an interesting antimetastatic activity. Since Ru(III) complexes are coordinatively more inert than the corresponding Ru(II) derivatives, an "activation by reduction" mechanism has been proposed to explain the biological activity of NAMI-A, thus acting as a pro-drug. We report here an electrochemical study on NAMI-A in aqueous solutions which emphasizes the structural and chemical consequences accompanying the easy Ru(III)/Ru(II) electron transfer (e.g., axial imidazole/water exchange in acidic solution in the short timescale of cyclic voltammetry followed by equatorial chloride/water exchange in the longer timescale of macroelectrolysis).
Electrochemical techniques were used to study the interaction between a panel of antiproliferative metallo-drugs and double-stranded DNA immobilized on screen-printed electrodes as a model of the analogous interaction occurring in solution. The propensity of a given metal drug to interact with DNA was measured as a function of the decrease of guanine oxidation signal, which was detected by square wave voltammetry. Estimates of variations in experimental parameters, such as the concentration of complexes, time following dissolution (ageing time) and the presence of chloride, are provided.
Here we report the findings from a study on the electrochemical behaviour of two Ru III complexes [LH][trans-Ru III Cl 4 L 2 ] (L = imidazole, ICR, or indazole, IndCR) in aqueous solution at different pH values. An electrochemically reversible and chemically quasi-reversible one-electron reduction is observed for both compounds. Despite the similarity of the structures, the fate of the electrogenerated Ru II species is different; in the case of ICR, imidazole, followed by a chloride
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.