Clinical epidemiological studies have reported that viral infections cause autoimmune pathology in humans. Host-pathogen protein sequences and structure-based molecular mimicry cause autoreactive T cells to cross-activate. The aim of the current study was to implement immunoinformatics approaches to infer sequence- and structure-based molecular mimicry between viral and human proteomic datasets. The protein sequences of all the so far known human-infecting viruses were obtained from the VIPR database, and complete human proteome data were retrieved from the NCBI repository. Based on a predefined, stringent threshold of comparative sequence analyses, 24 viral proteins were identified with significant sequence similarity to human proteins. PathDIP identified the enrichment of these homologous proteins in nine metabolic pathways with a p-value < 0.0001. Several viral and human mimic epitopes from these homologous proteins were predicted as strong binders of human HLA alleles, with IC50 < 50 nM. Downstream molecular docking analyses identified that lead virus-human homologous epitopes feasibly interact with HLA and TLR4 types of immune receptors. The vast majority of these top-hit homolog epitopic peptides belong to the herpes simplex and poxvirus families. These lead epitope biological sequences and 3D structural-based molecular mimicry may be promising for interpreting herpes simplex virus and poxvirus infection-mediated autoimmune disorders in humans.
Lumpy skin disease is a fatal emerging disease of cattle, which has started to gain extensive attention due to its rapid incursions across the globe. The disease epidemic causes economic loss and cattle morbidity. Currently, there are no specific treatments and safe vaccines against the lumpy skin disease virus (LSDV) to halt the spread of the disease. The current study uses genome-scan vaccinomics analyses to prioritize promiscuous vaccine candidate proteins of the LSDV. These proteins were subjected to top-ranked B- and T-cell epitope prediction based on their antigenicity, allergenicity, and toxicity values. The shortlisted epitopes were connected using appropriate linkers and adjuvant sequences to design multi-epitope vaccine constructs. Three vaccine constructs were prioritized based on their immunological and physicochemical properties. The model constructs were back-translated to nucleotide sequences and codons were optimized. The Kozak sequence with a start codon along with MITD, tPA, Goblin 5′, 3′ UTRs, and a poly(A) tail sequences were added to design a stable and highly immunogenic mRNA vaccine. Molecular docking followed by MD simulation analysis predicted significant binding affinity and stability of LSDV-V2 construct within bovine immune receptors and predicted it to be the top-ranked candidate to stimulate the humeral and cellular immunogenic responses. Furthermore, in silico restriction cloning predicted feasible gene expression of the LSDV-V2 construct in a bacterial expression vector. It could prove worthwhile to validate the predicted vaccine models experimentally and clinically against LSDV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.