SARS-CoV-2 is responsible for a new infectious disease (COVID-19) in which individuals can either remain asymptomatic or progress from mild to severe clinical conditions including acute respiratory distress syndrome and multiple organ failure. The immune mechanisms that potentially orchestrate the pathology in SARS-CoV-2 infection are complex and only partially understood. There is still paucity of data on the features of myeloid cells involved in this viral infection. For this reason, we investigated the different activation status profiles and the subset distribution of myeloid cells and their correlation with disease progression in 40 COVID-19 patients at different stages of disease. COVID-19 patients showed a decrease in the absolute number of plasmacytoid and myeloid dendritic cells, different subset distribution of monocytes and different activation patterns of both monocytes and neutrophils, coupled to a significant reduction of HLA-DR monocyte levels. We found that some of these alterations are typical of all COVID-19 patients, while some others vary at different stages of the disease and correlate with biochemical parameters of inflammation. Collectively, these data suggest that not only the lymphoid, but also the myeloid compartment, is severely affected by SARS-CoV-2 infection.
Overwhelming inflammatory reactions contribute to respiratory distress in patients with COVID-19. Ruxolitinib is a JAK1/ JAK2 inhibitor with potent anti-inflammatory properties. We report on a prospective, observational study in 34 patients with COVID-19 who received ruxolitinib on a compassionate-use protocol. Patients had severe pulmonary disease defined by pulmonary infiltrates on imaging and an oxygen saturation ≤ 93% in air and/or PaO2/FiO2 ratio ≤ 300 mmHg. Median age was 80.5 years, and 85.3% had ≥ 2 comorbidities. Median exposure time to ruxolitinib was 13 days, median dose intensity was 20 mg/day. Overall survival by day 28 was 94.1%. Cumulative incidence of clinical improvement of ≥2 points in the ordinal scale was 82.4% (95% confidence interval, 71-93). Clinical improvement was not affected by low-flow versus highflow oxygen support but was less frequent in patients with PaO2/FiO2 < 200 mmHg. The most frequent adverse events were anemia, urinary tract infections, and thrombocytopenia. Improvement of inflammatory cytokine profile and activated lymphocyte subsets was observed at day 14. In this prospective cohort of aged and high-risk comorbidity patients with severe COVID-19, compassionate-use ruxolitinib was safe and was associated with improvement of pulmonary function and discharge home in 85.3%. Controlled clinical trials are necessary to establish efficacy of ruxolitinib in COVID-19.
Mutations in CCAAT/enhancer binding protein α (CEBPA) occur in 5–10% of cases of acute myeloid leukemia. CEBPA-double-mutated cases usually bear biallelic N- and C-terminal mutations and are associated with a favorable clinical outcome. Identification of CEBPA mutants is challenging because of the variety of mutations, intrinsic characteristics of the gene and technical issues. Several screening methods (fragment-length analysis, gene expression array) have been proposed especially for large-scale clinical use; although efficient, they are limited by specific concerns. We investigated the phenotypic profile of blast and maturing bone marrow cell compartments at diagnosis in 251 cases of acute myeloid leukemia. In this cohort, 16 (6.4%) patients had two CEBPA mutations, whereas ten (4.0%) had a single mutation. First, we highlighted that the CEBPA-double-mutated subset displays recurrent phenotypic abnormalities in all cell compartments. By mutational analysis after cell sorting, we demonstrated that this common phenotypic signature depends on CEBPA-double-mutated multi-lineage involvement. From a multidimensional study of phenotypic data, we developed a classifier including ten core and widely available parameters. The selected markers on blasts (CD34, CD117, CD7, CD15, CD65), neutrophil (SSC, CD64), monocytic (CD14, CD64) and erythroid (CD117) compartments were able to cluster CEBPA-double-mutated cases. In a validation set of 259 AML cases from three independent centers, our classifier showed excellent performance with 100% specificity and 100% sensitivity. We have, therefore, established a reliable screening method, based upon multidimensional analysis of widely available phenotypic parameters. This method provides early results and is suitable for large-scale detection of CEBPA-double-mutated status, allowing gene sequencing to be focused in selected cases.
CXCR4 expression resulted in an independent prognostic factor. Our data support CXCR4 targeting as a potential therapeutic strategy.
Relapsed/refractory (R/R) acute myeloid leukemia (AML) is a largely unmet medical need, owing to the lack of standardized, effective treatment approaches, resulting in an overall dismal outcome. The only curative option for R/R AML patients is allogeneic hematopoietic stem cell transplantation (HSCT) which is only applicable in a fraction of patients due to the scarce efficacy and high toxicity of salvage regimens. Recently, a number of targeted agents with relatively favorable toxicity profiles have been explored in clinical trials for R/R AML patients. The Bcl-2 inhibitor venetoclax, in combination with hypomethylating agents or low dose cytarabine, has produced impressive results for newly diagnosed AML, while its role in R/R disease is not well defined yet. We retrospectively analyzed the clinical outcomes of 47 R/R AML patients treated with venetoclax-based regimens between March 2018 and December 2020 at our institution. Overall, we report a composite complete response rate of 55% with an overall acceptable toxicity profile. Outcomes were particularly favorable for NPM1 mutated patients, unlike for FLT3-ITD positive patients irrespective of NPM1 status. For patients treated with intention to transplant, the procedure could be finally performed in 54%. These findings suggest a role for venetoclax-based regimens in R/R AML patients and support the design of prospective studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.