CARDIAC IMAGINGC oronary CT angiography (CCTA) is currently recommended for the assessment of many cardiovascular diseases, including coronary artery disease (CAD) evaluation (1). CCTA is particularly important for its high negative predictive value for CAD in a low-and intermediaterisk acute chest pain population, with a high sensitivity and specificity for CAD in a low-and intermediate-risk chronic coronary syndrome population (2-5). This had been made possible by the recent technical evolution of the CT systems and the existence of large-scale validation cohort studies (6,7). However, conventional CCTA still has a limited spatial resolution and soft-tissue contrast, which impairs its diagnostic performance for small arteries (ie, ,2 mm) and high-contrast (eg, stent, calcification) and low-contrast (eg, noncalcified plaque) tasks, and carries the risks of relatively high x-ray dose delivery.Over the past 5 years, photon-counting CT (PCCT) technology has emerged in the field of CT imaging. Compared with conventional CT, this new modality has better spatial resolution and soft-tissue contrast and reduced noise, blooming, and beam-hardening artifacts (8). This is because of new energy-resolving detectors, called photon-counting Background. Spatial resolution, soft-tissue contrast, and dose-efficient capabilities of photon-counting CT (PCCT) potentially allow a better quality and diagnostic confidence of coronary CT angiography (CCTA) in comparison to conventional CT.
Purpose:To compare the quality of CCTA scans obtained with a clinical prototype PCCT system and an energy-integrating detector (EID) dual-layer CT (DLCT) system.
Materials and Methods:In this prospective board-approved study with informed consent, participants with coronary artery disease underwent retrospective electrocardiographically gated CCTA with both systems after injection of 65-75 mL of 400 mg/mL iodinated contrast agent at 5 mL/sec. A prior phantom task-based quality assessment of the detectability index of coronary lesions was performed. Ultra-high-resolution parameters were used for PCCT (1024 matrix, 0.25-mm section thickness) and EID DLCT (512 matrix, 0.67-mm section thickness). Three cardiac radiologists independently performed a blinded analysis using a five-point quality score (1 = insufficient, 5 = excellent) for overall image quality, diagnostic confidence, and diagnostic quality of calcifications, stents, and noncalcified plaques. A logistic regression model, adjusted for radiologists, was used to evaluate the proportion of improvement in scores with the best method.Results: Fourteen consecutive participants (12 men; mean age, 61 years 6 17) were enrolled. Scores of overall quality and diagnostic confidence were higher with PCCT images with a median of 5 (interquartile range [IQR], 2) and 5 (IQR, 1) versus 4 (IQR, 1) and 4 (IQR, 3) with EID DLCT images, using a mean tube current of 255 mAs 6 0 versus 349 mAs 6 111 for EID DLCT images (P , .01). Proportions of improvement with PCCT images for quality of calcification, stent, and non...