The aim of the study was to detect polymorphism in the POU1F1 gene in Sarda breed goat, as well as to establish if SNPs could be associated with milk productive traits. The research was conducted on 129 Sarda breed goats from 4 to 5 years old, multiparous, lactating and in their third to fifth lactation. We report nine exonic and seven non-coding regions SNPs within the Sarda goat POU1F1 gene, namely, Ex 1 61 G>C; Ex 1 108 G>A; Ex 3 C>T; Ex 3 92 C>T; Ex 4 110 A>G; Ex 5 34 G>A resulting in Arg213Lys change; IVS4 641 G>A, IVS4 643 A>C, IVS4 659 G>A, IVS4 677 A>C, IVS4 G699Del, IVS4 709 C>G, Ex 6 17 G>A resulting in Arg228Ser change, Ex 6 58 G>T, Ex 6 172 T>C, 3'UTR 110 T>C. A statistically significant association was found between genotype TT, in position 17 of the exon 6 (3.1 % of frequency), and increased milk yield (P < 0.01) while genotype GT (25.6 % of frequency) was associated with a higher fat content. Genotype TT in position 58 of the exon 6 (3.9 % of frequency) was found to be associated with a higher fat (P < 0.01) and protein content (P < 0.05). Twenty-eight haplotypes were detected, but no significant association between the haplotypes and the milk production traits have been found. Our data, as well as providing new SNPs extending the POU1F1 gene characterization, evidence a relationship between polymorphism and milk production traits in Sarda goat breed.
SummaryThe aim of this study was to examine the expression patterns of SREBP-1 gene in milk somatic cells and its association with milk fat yield during early lactation in Sarda breed sheep. A sample of 20 Sarda ewes, aged between 4 and 5 years, in their third to fourth lactation were chosen. From each ewe 28 days after lambing milk yield was measured, and a 160 ml milk sample for the RNA extraction and to test somatic cells count and lactose, fat and protein contents were collected. From the obtained RNA, total cDNA was synthesized and the quantitative PCR was performed. The fat, proteins and lactose content showed many differences among the animals, but these variations were no correlated with the milk yield. The SREBP-1 gene expression resulted higher in the high milk fat producing ewes. The correlation analysis showed that the SREBP-1 expression level is directly related to the amount of milk fat (g/die) (P < 0.001), while the total RNA obtained from each sample was found to be related to the somatic cells number (P < 0.001). Instead the expression of this gene showed no relations with the concentration of fat in milk. Our data highlight that in sheep SREBP-1 gene is expressed in the mammary gland during early lactation. Moreover, the positive relationship between SREBP-1 gene expression and the milk fat yield suggests that SREBP-1 gene is required for the lipid synthesis in the sheep mammary gland.
In order to investigate if the melatonin receptor 1A (MTNR1A) and kisspeptin (KiSS-1) genes influence the reproductive response to melatonin treatment, 510 Sarda ewe lambs were divided into groups C (control) and M; Group M received one melatonin implant (18mg). After 35 days rams were introduced for 40 days and subsequent lambing dates and number of newborns were recorded. The MTNR1A gene Exon II and KiSS-1 gene Exon I were amplified and genotyped by restriction fragment length polymorphism (RFLP) and single-strand conformation polymorphism analysis. Two single nucleotide polymorphisms (SNPs; C606T and G612A) in MTNR1A and one (G1035A) in KiSS-1 were found. The most frequent genotypes were G/G (63%) and C/C (53%) for MTNR1A and G/G (92%) for KiSS-1. Treated animals showed a higher lambing rate (P<0.05) and an advanced lambing date (P<0.05) compared with controls. The three SNPs did not influence the onset of reproductive activity. The majority of the G/G animals of Group M lambed before 190 days after ram introduction (P<0.05), while in Group C a higher number of G/G animals lambed after this date. Data revealed the positive effect of melatonin treatment on the time of first conception in ewe lambs and highlighted that the G/G genotype of the MTNR1A gene is able to influence the reproductive response to melatonin treatment.
The aim of the study was to develop a reliable method for the RNA extraction from milk of Sarda sheep breed and to highlight if the extracted RNA can be used for expression study on mammary genes involved in milk fat synthesis using RT-qPCR. The main result is that a sample of 150 ml of milk provides an optimal amount of RNA (73.5 μg/ml). The highest RNA concentration has been found in the samples analysed within 4 h after collection. The RNA extracted was positively correlated to the number of somatic cells (P < 0.001). The efficiency of the extraction method was confirmed by the results obtained from qPCR which showed a Ct value, for SREBPF1 gene of 26.8 ± 0.15. This research demonstrated that the high-quality of the RNA obtained is suited to use for studies of mammary genes expression in sheep, avoiding any damage caused by mammary gland biopsy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.