Background The chemical carcinogen 3-methylcholanthrene (3MC) binds to the aryl hydrocarbon receptor (AHR) that regulates the expression of cytochrome P450 (CYP) enzymes as CYP1B1, which is involved in the oncogenic activation of environmental pollutants as well as in the estrogen biosynthesis and metabolism. 3MC was shown to induce estrogenic responses binding to the estrogen receptor (ER) α and stimulating a functional interaction between AHR and ERα. Recently, the G protein estrogen receptor (GPER) has been reported to mediate certain biological responses induced by endogenous estrogens and environmental compounds eliciting an estrogen-like activity. Methods Molecular dynamics and docking simulations were performed to evaluate the potential of 3MC to interact with GPER. SkBr3 breast cancer cells and cancer-associated fibroblasts (CAFs) derived from breast tumor patients were used as model system. Real-time PCR and western blotting analysis were performed in order to evaluate the activation of transduction mediators as well as the mRNA and protein levels of CYP1B1 and cyclin D1. Co-immunoprecipitation studies were performed in order to explore the potential of 3MC to trigger the association of GPER with AHR and EGFR. Luciferase assays were carried out to determine the activity of CYP1B1 promoter deletion constructs upon 3MC exposure, while the nuclear shuttle of AHR induced by 3MC was assessed through confocal microscopy. Cell proliferation stimulated by 3MC was determined as biological counterpart of the aforementioned experimental assays. The statistical analysis was performed by ANOVA. Results We first ascertained by docking simulations the ability of 3MC to interact with GPER. Thereafter, we established that 3MC activates the EGFR/ERK/c-Fos transduction signaling through both AHR and GPER in SkBr3 cells and CAFs. Then, we found that these receptors are involved in the up-regulation of CYP1B1 and cyclin D1 as well as in the stimulation of growth responses induced by 3MC. Conclusions In the present study we have provided novel insights regarding the molecular mechanisms by which 3MC may trigger a physical and functional interaction between AHR and GPER, leading to the stimulation of both SkBr3 breast cancer cells and CAFs. Altogether, our results indicate that 3MC may engage both GPER and AHR transduction pathways toward breast cancer progression. Electronic supplementary material The online version of this article (10.1186/s13046-019-1337-2) contains supplementary material, which is available to authorized users.
Technological advancements in molecular genetics and cytogenetics have led to the diagnostic definition of complex or atypical clinical pictures. In this paper, a genetic analysis identifies multimorbidities, one due to either a copy number variant or a chromosome aneuploidy, and a second due to biallelic sequence variants in a gene associated with an autosomal recessive disorder. We diagnosed the simultaneous presence of these conditions, which co-occurred by chance, in three unrelated patients: a 10q11.22q11.23 microduplication and a homozygous variant, c.3470A>G (p.Tyr1157Cys), in the WDR19 gene associated with autosomal recessive ciliopathy; down syndrome and two variants, c.850G>A; p.(Gly284Arg) and c.5374G>T; p.(Glu1792*), in the LAMA2 gene associated with merosin-deficient congenital muscular dystrophy type 1A (MDC1A); and a de novo 16p11.2 microdeletion syndrome and homozygous variant, c.2828G>A (p.Arg943Gln), in the ABCA4 gene associated with Stargardt disease 1 (STGD1). The possibility of being affected by two relatively common or rare inherited genetic conditions would be suspected when signs and symptoms are incoherent with the primary diagnosis. All this could have important implications for improving genetic counseling, determining the correct prognosis, and, consequently, organizing the best long-term follow-up.
Background: Tumor metastasis is the main cause of death of cancer patients and the biggest hurdle for cancer cure. The identification of decisive drivers of metastasis is thus an urgent therapeutic need.Methods: Cancer cell spheroids, wound healing and cell aggregation assays were utilized to explore cell-cell adhesion capacity. Immunofluorescence confocal microscopy and flow cytometry analysis were utilized to quantify expression of target proteins, IHC analysis quantified the expression of target molecules in primary tumors and metastases. Pre-clinical models of orthotopic growth of colon cancer and metastatic diffusion to the liver were utilized. Xenotransplant transcriptome analysis assessed EMT determinant transcription. Patients: 24 distinct case series of breast, colon, uterus, ovary, stomach, lung, and pancreatic cancers, for a total number of 13,042 primary tumors were analyzed. KaplaneMeier plots were used to illustrate survival and metastatic relapse in investigated cohorts.Results: We identify functional inactivation of highly expressed E-cadherin as a pivotal driver of metastatic diffusion in human cancer. E-cadherin is inactivated by binding to Trop-2, which causes release from the cytoskeleton, loss of cell-cell adhesion and activation of b-catenin, while maintaining epithelial differentiation. This leads to antiapoptotic signaling, increased cell migration capacity and enhanced cancer cell survival. This global, Trop-2/E-cadherin/b-catenin-driven pro-metastatic program was recapitulated in human cancer, and was shown to profoundly impact on breast, colon, ovary, uterus, stomach cancer metastatic diffusion. Conclusions:We identify functional inactivation of E-cadherin by Trop-2 as a pivotal driver of EMT-less metastatic diffusion in human cancer. This global, Trop-2/E-cadherin/b-cateninedriven pro-metastatic program profoundly impacts on the survival of patients bearing breast, colon, uterus, ovary, stomach, lung, pancreas tumours, paving the way for novel diagnostic procedures and anti-cancer therapies.Legal entity responsible for the study: The authors.
Miscarriage is a condition that affects 10%–15% of all clinically recognized pregnancies, most of which occur in the first trimester. Approximately 50% of first‐trimester miscarriages result from fetal chromosome abnormalities. Conventional karyotyping analysis is limited due to unsuccessful culture fetal tissue and poor chromosome quality. Chromosomal microarray analysis (CMA) provides a significant increase in test success rate and incremental diagnostic yield in early pregnancy loss, using fetal DNA. We aimed to estimate detection of pathogenic Copy Number Variants (CNVs) and variants of uncertain significance (VOUS) in early pregnancy losses. Moreover we integrate cytogenomic findings performing Whole Exome Sequencing (WES) in order to elucidate the genetic associations of gene variants clinically significant for the viability of a conceptus. We collected product of conception (POC) samples (n= 33), managed in our genetic unit between February 1, 2020, and July 31, 2021. Fetal tissue samples were obtained after informed consent from females of average age 37 years old, who experienced spontaneous pregnancy losses (□<20 weeks) (70%), medical abortion (9%) and miscarriage after assisted reproductive treatment (21%). In the 97% of cases, the cytogenomic and/or molecular analysis were performed and concluded with an informative results (n= 32) useful for couple counseling. To avoid risk of maternal cell contamination and to define sex chromosomes, before CMA, QF‐PCR was performed. As aspected, autosomal trisomies are shown to be the most frequent anomalies (42%) associated with first‐trimester miscarriage, followed by monosomy X (3%). 2 CNVs, are detected (6%): 1 pathogenic de novo deletion associated with monosomy 1pter and 1 duplication with uncertain clinical significance in region 7q21.13, segregated from healthy father. In this sample, we performed WES in order to understand the possible genetic cause of major malformations detected by ultrasound exploration. A missense variant in ITF80 gene was detected. The encoded protein is essential for the development and maintenance of primary cilia, but a single variant, inherited from father, is not enough to conclude the diagnosis. In another case, with a fetal peculiar clinical picture, the WES analysis performed, showed a compound heterozygosity in the CC2D2A gene, associated with Meckel syndrome, an autosomal recessive ciliopathy. Ciliopathies are an expanding disease spectrum that have been associated with over 40 genes to date. In this case, the genetic diagnosis allow us to determine the cause of miscarriage with a major impact on the future couple reproductive plans and prenatal care in future pregnancies. This study demonstrates that the DNA‐based CMA technology overcomes many of the limitations of routine cytogenetic analysis of POC samples and, in selected cases, integration with WES analysis increase diagnostic rate and recurrence‐risk for subsequent pregnancies can be also determined.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.