Background Long-term pulmonary sequelae following hospitalization for SARS-CoV-2 pneumonia is largely unclear. The aim of this study was to identify and characterise pulmonary sequelae caused by SARS-CoV-2 pneumonia at 12-month from discharge. Methods In this multicentre, prospective, observational study, patients hospitalised for SARS-CoV-2 pneumonia and without prior diagnosis of structural lung diseases were stratified by maximum ventilatory support (“oxygen only”, “continuous positive airway pressure (CPAP)” and “invasive mechanical ventilation (IMV)”) and followed up at 12 months from discharge. Pulmonary function tests and diffusion capacity for carbon monoxide (DLCO), 6 min walking test, high resolution CT (HRCT) scan, and modified Medical Research Council (mMRC) dyspnea scale were collected. Results Out of 287 patients hospitalized with SARS-CoV-2 pneumonia and followed up at 1 year, DLCO impairment, mainly of mild entity and improved with respect to the 6-month follow-up, was observed more frequently in the “oxygen only” and “IMV” group (53% and 49% of patients, respectively), compared to 29% in the “CPAP” group. Abnormalities at chest HRCT were found in 46%, 65% and 80% of cases in the “oxygen only”, “CPAP” and “IMV” group, respectively. Non-fibrotic interstitial lung abnormalities, in particular reticulations and ground-glass attenuation, were the main finding, while honeycombing was found only in 1% of cases. Older patients and those requiring IMV were at higher risk of developing radiological pulmonary sequelae. Dyspnea evaluated through mMRC scale was reported by 35% of patients with no differences between groups, compared to 29% at 6-month follow-up. Conclusion DLCO alteration and non-fibrotic interstitial lung abnormalities are common after 1 year from hospitalization due to SARS-CoV-2 pneumonia, particularly in older patients requiring higher ventilatory support. Studies with longer follow-ups are needed.
<b><i>Background:</i></b> Long-term pulmonary sequelae following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pneumonia are not yet confirmed; however, preliminary observations suggest a possible relevant clinical, functional, and radiological impairment. <b><i>Objectives:</i></b> The aim of this study was to identify and characterize pulmonary sequelae caused by SARS-CoV-2 pneumonia at 6-month follow-up. <b><i>Methods:</i></b> In this multicentre, prospective, observational cohort study, patients hospitalized for SARS-CoV-2 pneumonia and without prior diagnosis of structural lung diseases were stratified by maximum ventilatory support (“oxygen only,” “continuous positive airway pressure,” and “invasive mechanical ventilation”) and followed up at 6 months from discharge. Pulmonary function tests and diffusion capacity for carbon monoxide (DLCO), 6-min walking test, chest X-ray, physical examination, and modified Medical Research Council (mMRC) dyspnoea score were collected. <b><i>Results:</i></b> Between March and June 2020, 312 patients were enrolled (83, 27% women; median interquartile range age 61.1 [53.4, 69.3] years). The parameters that showed the highest rate of impairment were DLCO and chest X-ray, in 46% and 25% of patients, respectively. However, only a minority of patients reported dyspnoea (31%), defined as mMRC ≥1, or showed restrictive ventilatory defects (9%). In the logistic regression model, having asthma as a comorbidity was associated with DLCO impairment at follow-up, while prophylactic heparin administration during hospitalization appeared as a protective factor. The need for invasive ventilatory support during hospitalization was associated with chest imaging abnormalities. <b><i>Conclusions:</i></b> DLCO and radiological assessment appear to be the most sensitive tools to monitor patients with the coronavirus disease 2019 (COVID-19) during follow-up. Future studies with longer follow-up are warranted to better understand pulmonary sequelae.
The conserved protein kinase Rio1 localizes to the cytoplasm and nucleus of eukaryotic cells. While the roles of Rio1 in the cytoplasm are well characterized, its nuclear function remains unknown. Here we show that nuclear Rio1 promotes rDNA array stability and segregation in Saccharomyces cerevisiae. During rDNA replication in S phase, Rio1 downregulates RNA polymerase I (PolI) and recruits the histone deacetylase Sir2. Both interventions ensure rDNA copy-number homeostasis and prevent the formation of extrachromosomal rDNA circles, which are linked to accelerated ageing in yeast. During anaphase, Rio1 downregulates PolI by targeting its subunit Rpa43, causing PolI to dissociate from the rDNA. By stimulating the processing of PolI-generated transcripts at the rDNA, Rio1 allows for rDNA condensation and segregation in late anaphase. These events finalize the genome transmission process. We identify Rio1 as an essential nucleolar housekeeper that integrates rDNA replication and segregation with ribosome biogenesis. A t anaphase onset, the replicated chromosomes separate and then segregate along the mitotic spindle into the daughter cells. In the budding yeast Saccharomyces cerevisiae, the locus containing the genes that encode the ribosomal RNAs (rDNA) segregates after the rest of the genome, in late anaphase [1][2][3][4] . The rDNA locus exists as a tandem-repeat array comprising B150 rDNA units containing the 35S and 5S genes, which are transcribed by RNA polymerase I (PolI) and PolIII, respectively. Processing of the 35S pre-rRNA generates 5.8S, 18S and 25S rRNA that, together with the 5S rRNA, become the catalytic backbones of each ribosome 5,6 . Only in anaphase does yeast repress rDNA transcription 4 , which allows the sister rDNA loci to condensate and segregate. PolI downregulation in anaphase is mediated by the Cdc14 phosphatase acting on PolI subunit Rpa43 (ref. 4), resulting in PolI dissociating from the 35S rDNA. The removal of PolI and the local resolution of its transcripts allow the condensin complex to bind. The latter compacts the rDNA array and recruits the DNA decatenating enzyme topoisomerase II (refs 1,3,4,7) resulting in the physical separation and subsequent segregation of the sister rDNA loci.S. cerevisiae Rio1 belongs to the atypical RIO protein kinase family whose members lack the activation loop and substrate recognition domain present in canonical eukaryotic protein kinases [8][9][10][11] . Noteworthy, the RIO kinases may act especially as ATPases as they exhibit o0.1% kinase activity in vitro [12][13][14] . Cytoplasmic Rio1 contributes to pre-40S ribosome biogenesis by promoting 20S pre-rRNA maturation and by stimulating the recycling of trans-acting factors at the pre-40S subunit, both in yeast 12,[15][16][17][18] and human cells 19,20 . Roles in the nucleus are unknown for any RIO member, either in yeast or eukaryotes beyond. Using S. cerevisiae, we now describe the first activities of Rio1 in the nucleus. Foremost, Rio1 downregulates PolI transcription through the cell cycle. In G...
Idiopathic pulmonary fibrosis (IPF), the most lethal form of interstitial pneumonia of unknown cause, is associated with a specific radiological and histopathological pattern (the so-called “usual interstitial pneumonia” pattern) and has a median survival estimated to be between 3 and 5 years after diagnosis. However, evidence shows that IPF has different clinical phenotypes, which are characterized by a variable disease course over time. At present, the natural history of IPF is unpredictable for individual patients, although some genetic factors and circulating biomarkers have been associated with different prognoses. Since in its early stages, IPF may be asymptomatic, leading to a delayed diagnosis. Two drugs, pirfenidone and nintedanib, have been shown to modify the disease course by slowing down the decline in lung function. It is also known that 5–10% of the IPF patients may be affected by episodes of acute and often fatal decline. The acute worsening of disease is sometimes attributed to identifiable conditions, such as pneumonia or heart failure; but many of these events occur without an identifiable cause. These idiopathic acute worsenings are termed acute exacerbations of IPF. To date, clinical biomarkers, diagnostic, prognostic, and theranostic, are not well characterized. However, they could become useful tools helping facilitate diagnoses, monitoring disease progression and treatment efficacy. The aim of this review is to cover molecular mechanisms underlying IPF and research into new clinical biomarkers, to be utilized in diagnosis and prognosis, even in patients treated with antifibrotic drugs.
BackgroundNutritional status (NS) impacts on quality of life and prognosis of patients with respiratory diseases including idiopathic pulmonary fibrosis (IPF). However, there is a lack of studies performing an extensive nutritional assessment of IPF patients. This study aims to investigate the NS and to identify nutritional phenotypes in a cohort of IPF patients at diagnosis.MethodsPatients underwent a thorough pulmonary and nutritional evaluation including questionnaires on NS and physical activity, anthropometry, body impedence, dynamometry, 4-meter gait speed and blood tests.Results90 IPF patients (78.9% males, mean age 72.7 years) were enrolled. The majority of patients were classified as Gender-Age-Physiology Index stage 2 (47, 52.2%) with an inactive lifestyle according to International Physical Activity Questionnaire score (39, 43.3%) and had mean forced vital capacity and diffusing capacity for carbon monoxide 86.5% and 54.2%, respectively. In regards to nutritional phenotypes, the majority of patients were normally nourished (67.8%, 95% Confidence Interval (CI):58.6–77.7), followed by non-sarcopenic obese (25.3%, 95%CI:16.1–35.2), sarcopenic (4.6%, 95%CI:0.0–14.5) and sarcopenic obese (2.3%, 95%CI:0.0–12.2). Among normally nourished, 49.2% showed early signs of nutritional and physical performance alterations, including body mass index≥ 30 in 4.3%, history of weight loss≥ 5% in 11.9%, reduction of gait speed and hand grip strength in 11.9% and 35.6%, respectively. Low vitamin D values were observed in 56.3% of cases.ConclusionsIPF patients at diagnosis are mainly normally nourished and obese, but early signs of nutritional and physical performance impairment can already be identified at this stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.