Pyrite (FeS 2 ) is one of the main tailings derived from coal mining. When processed, pyrite has several applications with high value-added, in contrast, if improperly discarded, it causes major environmental impacts, like the acid mine drainage. For those reasons, the seeking for beneficiation techniques of Pyrite has been the target of numerous studies. One of the most employed techniques is the separation by density using heavy liquids, like bromoform, as a separation medium. In the present work, we propose the use of lithium heteropolytungstate (LST), a non-halogenated and non-toxic solution, as an alternative in the separation by density method. For the experiments, raw pyrite samples were collected from the tailings of coal extraction from a mining company in Santa Catarina, Brazil. After the separation process, the samples before and after the beneficiation were characterized by XRD, FTIR, and XRF techniques. The results revealed that the separation technique used in this work led to a significant increase in the concentration of pyrite, going from less than 10% in the raw sample and reaching almost 80% after processing. This impressive result reveals that LST represents a promising alternative for separating pyrite by density techniques, showing much greater effectiveness than other heavy liquids used in the literature, in addition to being environmentally friendly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.