BACKGROUND AND PURPOSE
The bed nucleus of the stria terminalis (BNST) is a limbic structure that is involved in the expression of conditioned contextual fear. Among the numerous neural inputs to the BNST, noradrenergic synaptic terminals are prominent and some evidence suggests an activation of this noradrenergic neurotransmission in the BNST during aversive situations. Here, we have investigated the involvement of the BNST noradrenergic system in the modulation of behavioural and autonomic responses induced by conditioned contextual fear in rats.
EXPERIMENTAL APPROACH
Male Wistar rats with cannulae bilaterally implanted into the BNST were submitted to a 10 min conditioning session (6 footshocks, 1.5 ma/ 3 s). Twenty‐four hours later freezing and autonomic responses (mean arterial pressure, heart rate and cutaneous temperature) to the conditioning box were measured for 10 min. The adrenoceptor antagonists were administered 10 min before the re‐exposure to the aversive context.
KEY RESULTS
L‐propranolol, a non‐selective β‐adrenoceptor antagonist, and phentolamine, a non‐selective α‐adrenoceptor antagonist, reduced both freezing and autonomic responses induced by aversive context. Similar results were observed with CGP20712, a selective β1‐adrenoceptor antagonist, and WB4101, a selective α1‐antagonist, but not with ICI118,551, a selective β2‐adrenoceptor antagonist or RX821002, a selective α2‐antagonist.
CONCLUSIONS AND IMPLICATIONS
These findings support the idea that noradrenergic neurotransmission in the BNST via α1‐ and β1‐adrenoceptors is involved in the expression of conditioned contextual fear.
The crosstalk between the immune and the autonomic nervous system may impact the cardiovascular function. Toll-like receptors are components of the innate immune system and play developmental and physiological roles. Toll-like receptor 9 (TLR9) is involved in the pathogenesis of cardiovascular diseases, such as hypertension and heart failure. Since such diseases are commonly accompanied by autonomic imbalance and lower baroreflex sensitivity, we hypothesized that TLR9 modulates cardiac autonomic and baroreflex control of arterial pressure (AP). Toll-like receptor 9 knockout (TLR9 KO) and wild-type (WT) mice were implanted with catheters into carotid artery and jugular vein and allowed to recover for 3 days. After basal recording of AP, mice received methyl-atropine or propranolol. AP and pulse interval (PI) variability were evaluated in the time and frequency domain (spectral analysis), as well as by multiscale entropy. Spontaneous baroreflex was studied by sequence technique. Behavioral and cardiovascular responses to fear-conditioning stress were also evaluated. AP was similar between groups, but TLR9 KO mice exhibited lower basal heart rate (HR). AP variability was not different, but PI variability was increased in TLR9 KO mice. The total entropy was higher in TLR9 KO mice. Moreover, baroreflex function was found higher in TLR9 KO mice. Atropine-induced tachycardia was increased in TLR9 KO mice, whereas the propranolol-induced bradycardia was similar to WT mice. TLR9 KO mice exhibit increased behavioral and decreased tachycardia responses to fear-conditioning stress. In conclusion, our findings suggest that TLR9 may negatively modulate cardiac vagal tone and baroreflex in mice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.