The seed lipids from five sunflower mutants, two with high palmitic acid contents, one of them in high oleic background, and three with high stearic acid contents, have been characterized. All lipid classes of these mutant seeds have increased saturated fatty acid content although triacylglycerols had the highest levels. The increase in saturated fatty acids was mainly at the expense of oleic acid while linoleic acid levels remained unchanged. No difference between mutants and standard sunflower lines used as controls was found in minor fatty acids: linolenic, arachidic, and behenic. In the high-palmitic mutants palmitoleic acid (16:1n-7) and some palmitolinoleic acid (16:2n-7, 16:2n-4) also appeared. Phosphatidylinositol, the lipid with the highest palmitic acid content in controls, also had the highest content of palmitic or stearic acids, depending on the mutant type, suggesting that saturated fatty acids are needed for its physiological function. Positional analysis showed that mutant oils have very low content of saturated fatty acids in the sn-2 position of triacylglycerols, between the content of olive oil and cocoa butter.
Developing seeds from sunflower high palmitic acid mutants showed high levels of palmitic acid at early stages. The stearic acid content of high stearic mutants (CAS-3, CAS-4, and CAS-8) increased from low or medium initial values until it reached the maximum level at 16 days after flowering. All mutant lines increased palmitic acid content at high growth temperature with CAS-5 having the maximum increase (5.7%). At the same time, all but CAS-3 increased stearic acid content at low temperature with CAS-8 showing the maximum increase (9.6%). The unsaturation level in the mutants had a different linoleic/oleic ratio than the control line, but always with a ratio higher than 1 at low temperature. Only mutant CAS-5 maintained a similar desaturation level at any temperature, being 3.5-11 times higher than that of the other lines. The temperature affects the polar lipids in a similar way.
During sunflower (Helianthus annuus L.) seed formation there was an active period of lipid biosynthesis between 12 and 28 days after flowering (DAF). The maximum in-vitro acyl-acyl carrier protein (ACP) thioesterase activities (EC 3.1.2.14) were found at 15 DAF, preceding the largest accumulation of lipid in the seed. Data from the apparent kinetic parameters, Vmax and Km, from seeds of 15 and 30 DAF, showed that changes in acyl-ACP thioesterase activity are not only quantitative, but also qualitative, since, although the preferred substrate was always oleoyl-ACP, the affinity for palmitoyl-ACP decreased, whereas that for stearoyl-ACP increased with seed maturation. Bisubstrate assays carried out at 30 DAF seemed to indicate that the total activity found in mature seeds is due to a single enzyme with 100/75/15 affinity for oleoyl-ACP/stearoyl-ACP/ palmitoyl-ACP. In contrast, at 15 DAF, enzymatic data together with partial sequences from cDNAs indicated the presence of at least two enzymes with different properties, a FatA-like thioesterase, with a high affinity for oleoyl-ACP, plus a FatB-like enzyme, with preference for long-chain saturated fatty acids, both being expressed during the active lipid biosynthesis period. Competition assays carried out with CAS-5, a mutant with a higher content of palmitic acid in the seed oil, indicated that a modified FatA-type thioesterase is involved in the mutant phenotype.
Modifications of the fatty acid composition of plant vegetative tissues produce deficient plant growth. To determine the expression of the seed high-saturated sunflower (Helianthus annuus L.) mutant character during the vegetative cycle, five sunflower mutant lines (three high-stearic and two high-palmitic) have been studied during their germination and vegetative cycle. No significant variations with regard to the control lines were observed in the mutant vegetative tissue lipids; however, during seed germination important differences between lines were found. Although in the early steps of germination the palmitic and stearic acid levels in the respective mutants seedling cotyledons continued being higher than those of the control lines, they decreased and reached values similar to the controls, except in CAS-3. Variations in the cotyledon palmitic acid content with regard to the control line were also observed in high-stearic mutants, suggesting the expression of a modified acyl-ACP thioesterase or recycling of seed fatty acids during seedling development.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.