K2P potassium channels regulate cellular excitability using their selectivity filter (C-type) gate. C-type gating mechanisms, best characterized in homotetrameric potassium channels, remain controversial and are attributed to selectivity filter pinching, dilation, or subtle structural changes. The extent to which such mechanisms control C-type gating of innately heterodimeric K2Ps is unknown. Here, combining K2P2.1 (TREK-1) x-ray crystallography in different potassium concentrations, potassium anomalous scattering, molecular dynamics, and electrophysiology, we uncover unprecedented, asymmetric, potassium-dependent conformational changes that underlie K2P C-type gating. These asymmetric order-disorder transitions, enabled by the K2P heterodimeric architecture, encompass pinching and dilation, disrupt the S1 and S2 ion binding sites, require the uniquely long K2P SF2-M4 loop and conserved “M3 glutamate network,” and are suppressed by the K2P C-type gate activator ML335. These findings demonstrate that two distinct C-type gating mechanisms can operate in one channel and underscore the SF2-M4 loop as a target for K2P channel modulator development.
Clusters of charged groups on the surface of proton-transfer proteins may participate in proton transfers. PsbO, an extrinsic subunit of photosystem II, is a carboxylate-rich protein part of an extensive hydrogen-bond network leading to the catalytic site. This raises the important question as to whether specific clusters of carboxylate groups on the surface of PsbO may directly assist transfer of protons from the catalytic site to the bulk. From molecular dynamics simulations of PsbO in aqueous solution, we find that, close to the surface of PsbO, the mobility of water molecules is lower than that for bulk water. At the site where PsbO docks and hydrogen bonds to photosystem II, water molecules have low mobility, and we identify a carboxylate cluster with persistent bridging of the carboxylates via short hydrogen-bonding water wires. This water-bridged carboxylate cluster could be important for proton transfer and binding of PsbO to photosystem II.
We present a quasielastic neutron scattering (QENS) investigation of the component dynamics in an aqueous Poly(vinyl methyl ether) (PVME) solution (30% water content in weight). In the glassy state, an important shift in the Boson peak of PVME is found upon hydration. At higher temperatures, the diffusive-like motions of the components take place with very different characteristic times, revealing a strong dynamic asymmetry that increases with decreasing T. For both components, we observe stretching of the scattering functions with respect to those in the bulk and non-Gaussian behavior in the whole momentum transfer range investigated. To explain these observations we invoke a distribution of mobilities for both components, probably originated from structural heterogeneities. The diffusive-like motion of PVME in solution takes place faster and apparently in a more continuous way than in bulk. We find that the T-dependence of the characteristic relaxation time of water changes at T ≲ 225 K, near the temperature where a crossover from a low temperature Arrhenius to a high temperature cooperative behavior has been observed by broadband dielectric spectroscopy (BDS) [S. Cerveny, J. Colmenero and A. Alegría, Macromolecules, 38, 7056 (2005)]. This observation might be a signature of the onset of confined dynamics of water due to the freezing of the PVME dynamics, that has been selectively followed by these QENS experiments. On the other hand, revisiting the BDS results on this system we could identify an additional "fast" process that can be attributed to water motions coupled with PVME local relaxations that could strongly affect the QENS results. Both kinds of interpretations, confinement effects due to the increasing dynamic asymmetry and influence of localized motions, could provide alternative scenarios to the invoked "strong-to-fragile" transition.
Summary The YidC/Oxa1/Alb3 family of membrane proteins function to insert proteins into membranes in bacteria, mitochondria, and chloroplasts. Recent x-ray structures of YidC from Bacillus halodurans and Escherichia coli revealed a hydrophilic groove that is accessible from the lipid bilayer and the cytoplasm. Here, we explore the water accessibility within the conserved core region of the E. coli YidC using in vivo cysteine-alkylation scanning and molecular dynamics (MD) simulations of YidC in POPE/POPG membranes. As expected from the structure, YidC possesses an aqueous membrane cavity localized to the membrane inner leaflet. Both the scanning data and the MD simulations show that the lipid-exposed TM helices 3, 4 and 5 are short, leading to membrane thinning around YidC. Close examination of the MD data reveals previously unrecognized structural features that are likely important for protein stability and function.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.