The toxicity of these regimens was tolerable. Certain patients with high-risk CNS malignancies may benefit from such a treatment approach. Subsequent trials should attempt to determine which patients are most likely to benefit from high-dose chemotherapy with autologous stem-cell rescue.
Polyethylene glycol (PEG)-modified bovine adenosine deaminase (ADA) is used for replacement therapy of severe combined immunodeficiency disease due to inherited ADA deficiency. We monitored IgG anti-ADA antibody in 17 patients treated by intramuscular injections of PEG-ADA for 1 to > 5.5 yr. ELISA-detectable anti-ADA IgG appeared in 10 patients, usually between the third and eighth months oftreatment. Anti-ADA levels did not correlate with trough plasma ADA activity, which averaged 1.8-5 times normal blood (erythrocyte) ADA activity, depending on dose (15-60 U/kg per wk). ELISA-detectable anti-ADA antibodies were directed primarily at bovine-specific peptide (rather than PEG-containing) epitopes. Enhanced enzyme clearance, mediated by antibody that directly inhibited native and PEG-modified bovine ADA, and native, but not PEG-modified human ADA, occurred in two patients. In one, tolerance was induced; in the second, twice weekly injections of PEG-ADA compensated for accelerated clearance. We speculate that inhibitory antibodies recognize conserved, relatively PEG-free epitope(s) encompassing the active site, and that in human, but not bovine, ADA a PEG-attachment site "shields" the active site from immune recognition. We conclude that PEG-modification largely prevents the development of high affinity, or high levels of, clearing antibodies to bovine ADA, and that PEG-modified human ADA should be further investigated as a possible treatment for ADA deficiency.
Modification by covalent attachment of polyethylene glycol (PEG) can reduce the immunogenicity and prolong the circulating life of proteins, but the utility of this approach for any protein is restricted by the number and distribution of PEG attachment sites (e.g., e-amino groups of lysine residues). We have developed a strategy for introducing additional sites for PEG attachment by using site-directed mutagenesis to selectively replace arginine with lysine codons and tested it with purine nucleoside phosphorylase (PNP) from Escherchia coli, an extremely stable but immunogenic enzyme, that could potentially be used to treat an inherited deficiency of PNP. A triple mutant, RK3, possessing three Arg --Lys substitutions was constructed that increased the number of lysines per PNP subunit from 14 to 17, providing an additional 18 potential PEG attachment sites per hexameric enzyme molecule. The wild-type and RK3 enzymes had similar catalytic activity, antigenicity, and immunogenicity. After PEG modification, both enzymes retained catalytic activity, the plasma half-life of both enzymes in mice increased from 4 hr to 4 days, and the binding of both enzymes by antisera raised against each unmodified enzyme was markedly diminished.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.