We demonstrate that a modified point diffraction interferometer can be used to measure the power distribution of different kinds of ophthalmic lenses such as spectacles, rigid and soft contact lenses, progressive lenses, etc. The relationship between the shape of the fringes and the power characteristics of the component being tested is simple and makes the design a very convenient and robust tool for inspection or quality control. Some simulations based on the Fresnel approximation are included.
The device is compact, robust, and fairly accurate, and the operational principle is very simple. By direct measurements it provides the local dioptric power, i.e., the second order wavefront properties, of the lens for selected regions of interest. The position and area can be chosen by the user. The only mobile part of the setup allows for the selection of the measurement points without any additional prismatic correction or movement of the PAL.
The interferometric device is compact, robust, and accurate. The operational principle is very simple, and it provides the local high-order aberrations directly without adding additional parts to the interferometer. As expected, the amount of high-order aberrations depends on the chosen ROI of the PAL; the corridor is the more critical region. We found, in accordance with the literature, that, in the corridor, second- and third-order aberrations are dominant and spherical aberration is negligible.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.