The anthocyanin biosynthetic pathway is well characterized in plants. However, in tomato (Solanum lycopersicum L.) an exhaustive knowledge of its regulation is still lacking. Tomato mutants showing higher levels of anthocyanins in fruits or vegetative tissues, such as Anthocyanin fruit (Aft) or atroviolacea (atv), have been extensively exploited in the attempt to clarify the process. Nevertheless, only candidate genes have been proposed as responsible for such phenotypes. The recessive atv mutation likely represents an allelic variant of a gene introgressed in tomato from wild Solanum species. We performed genome sequencing of atv/atv plants followed by candidate gene analysis, and identified a mutated gene encoding an R3-MYB protein. When overexpressed, this protein abolished anthocyanin production in tomato seedlings and plants, by silencing key regulators and biosynthetic genes of the pathway. The functional analysis of the protein clearly showed that it can negatively interfere with the activation of the anthocyanin biosynthetic pathway mediated by the endogenous MYB-bHLH-WDR (MBW) complexes. In particular, this R3-MYB protein can directly bind the bHLH factors which are part of the MBW complexes, therefore acting as a competitive inhibitor. The R3-MYB protein here described is therefore involved in a feedback mechanism that dampens the production of anthocyanins once activated by endogenous or exogenous stimuli. The atv mutation causes the production of a truncated version of the R3-MYB factor that cannot retain the full potential to inhibit the MBW complexes, thus leading to a constitutively higher production of anthocyanins.
Tomato ( Solanum lycopersicum ) fruits are typically red at ripening, with high levels of carotenoids and a low content in flavonoids. Considerable work has been done to enrich the spectrum of their health-beneficial phytochemicals, and interspecific crosses with wild species have successfully led to purple anthocyanin-colored fruits. The Aft ( Anthocyanin fruit ) tomato accession inherited from Solanum chilense the ability to accumulate anthocyanins in fruit peel through the introgression of loci controlling anthocyanin pigmentation, including four R2R3 MYB transcription factor-encoding genes. Here, we carried out a comparative functional analysis of these transcription factors in wild-type and Aft plants, and tested their ability to take part in the transcriptional complexes that regulate the biosynthetic pathway and their efficiency in inducing anthocyanin pigmentation. Significant differences emerged for SlAN2like, both in the expression level and protein functionality, with splicing mutations determining a complete loss of function of the wild-type protein. This transcription factor thus appears to play a key role in the anthocyanin fruit pigmentation. Our data provide new clues to the long-awaited genetic basis of the Aft phenotype and contribute to understand why domesticated tomato fruits display a homogeneous red coloration without the typical purple streaks observed in wild tomato species.
Wound healing is a complicated process, and the effective management of wounds is a major challenge. Natural herbal remedies have now become fundamental for the management of skin disorders and the treatment of skin infections due to the side effects of modern medicine and lower price for herbal products. The aim of the present study is to summarize the most recent in vitro, in vivo, and clinical studies on major herbal preparations, their phytochemical constituents, and new formulations for wound management. Research reveals that several herbal medicaments have marked activity in the management of wounds and that this activity is ascribed to flavonoids, alkaloids, saponins, and phenolic compounds. These phytochemicals can act at different stages of the process by means of various mechanisms, including anti-inflammatory, antimicrobial, antioxidant, collagen synthesis stimulating, cell proliferation, and angiogenic effects. The application of natural compounds using nanotechnology systems may provide significant improvement in the efficacy of wound treatments. Increasing the clinical use of these therapies would require safety assessment in clinical trials.
The 12 amino acid peptide derived from the Arabidopsis soluble secretory protein CLAVATA3 (CLV3) acts at the cell surface in a signalling system that regulates the size of apical meristems. The subcellular pathway involved in releasing the peptide from its precursor is unknown. We show that a CLV3-GFP fusion expressed in transfected tobacco protoplasts or transgenic tobacco plants has very short intracellular half-life that cannot be extended by the secretory traffic inhibitors brefeldin A and wortmannin. The fusion is biologically active, since the incubation medium of protoplasts from CLV3-GFP-expressing tobacco contains the CLV3 peptide and inhibits root growth. The rapid disappearance of intact CLV3-GFP requires the signal peptide and is inhibited by the proteasome inhibitor MG132 or coexpression with a mutated CDC48 that inhibits endoplasmic reticulum-associated protein degradation (ERAD). The synthesis of CLV3-GFP is specifically supported by the endoplasmic reticulum chaperone endoplasmin in an in vivo assay. Our results indicate that processing of CLV3 starts intracellularly in an early compartment of the secretory pathway and that ERAD could play a regulatory or direct role in the active peptide synthesis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.